
r ~AD-All? 568 STANFORD UNIV CA STANFORD ELECTRONICS
LABS F/ 9/2

SYSTEM CONSIDERATIONS IN THE DESIGN OF RESIDUE PROCESSORS.CU)
MAR 79 A HUANG, J MANDEVILLE, J E GOODMAN AFOSR-77-3219

UNCLASSIFIED SU-SEL-79G008 AFOSR-TR-81-0744 NL

2 ffffffffffff

AFOSR-TR. 8 -074 A LEVEL/v
SEL-79-008

SYSTM! CONSIDERAT IONS IN THE

DESIGN OF RESIDUE PROCESSORS

Alan Huang
Jon Mandeville

Joseph W. Goodman

Ott Satoshi Ishihara ,W.

March 1979

This manuscript is submitted for
publication with the understanding that the
United States Government is authorized to
reproduce and distribute reprints for govern-

mental purposes

'S

Annual Technical Report No. L722-2

Research sponsored by the Air Force Office of
Scientific Research, Air Force Systems Command,
USAF, under Grant No. AFOSR-77-3219. The
United States Government is authorized to
reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation
hereon.

C-,

C. Information Systems Laboratory
L.. Stanford Electronics Laboratories

Stanford University
Stanford, California

App .
A

diLtributioa u limitede

0

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

R' OS1,l05 R " 4] 2 OVT ACCESSION NO 3 RECIPIENT'S CATALOG NUMBER

4 TITLE (and S'btlmel 5. TYPE OF REPORT & PERIOD COVERED

System Considerations in the Design of Annual Report
Residue Processors

2.1.78.-l.31.79.

6 PERFORMING ORG REPORT NUMBER

AUTHOoP0 !SEL-79-008

8 CONTRACT OR GRANT NUMBERIs)
Alan Huang, Jon Mandeville, AFOSR-77-3219
Joseph W. Goodman, S. Ishihara

9 PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASKAREA.& WORK UNIT NUMBERS

Stanford University
Stanford,

California, 94305 12. REPORT DAE [1.N .O PA S

11. CONTROLLING OFFICE NAME AND ADDRESS

United States Air Force 3.31.79. 125

Air Force Office of Scientific Research 15 SECURITY CLASS. (f this redort
Bldg. 410, Boiling AFB, D.C. 20332 Unclassified

14 MONITORING AGENCY NAME & ADDRESS Of Ciff. from Controlling Office)

15a. DECLASSIFICATION 'DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this report)

Approved for public release;

diztribution Unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side If necessary and identify by block number)

Residue arithmetic
Optical data Processing
Integrated Optics
Optical Computing

20 ABST ACT (Continue on reverse side if necessary and ,dent.fy by block number)
- .QThe possible structure of a residue computer based on read-only-

~memories (ROMs) is considered. Methods for implementation with

*' either electronic or optical ROMs is discussed. Methods for
reducing errors in residue computations are discussed.

DD, FORM 1473 Unclassified .j +, / .
1D .JAN 731473 -4 I -

EDITION OF 1 NOV 65 IS OBSOLETE SECURITY CLASSIFICATION OF THIS PAGE (When Data Enled)

... i l I I I II I

I. INTRODUCTION

Tnis report describes the work accomplished under grant AFOSR-77-

3219 from the Air Force Office of Scientific Research during the period

I February 1978 through 31 January 1979.

Tne work is divided into two separate and disinct parts. Section

IT, written by Alan Huang, is concerned with a variety of architectural

issues in the design of any computer based on residue arithmetic. The

results are directly applicable to optical approaches to residue comput-

ing, but are equally important in considering the design of electronic

versions of this type of computer.

Section III, written by Jon Mandeville, considers the problem of

error detection and correction in residue computers. As interest grows

in the use of residue techniques in what are basically analog systems,

the consequences of errors in the representation of residue numbers by

analog values must be considered. The issue is a complex one, for often

the probability of error will increase as the size of a given modulus

increases, so the choice of moduli will affect the reliability of the

system. Sometimes extra moduli can be used for the sole purpose of pro-

tecting the integrity of the data. These issues are explored in detail

in section III.

Our earlier report [Ref. 1] is essential background reading before

begining this report. A sightly condensed version of the earlier report

~ n anua'ry 1 h issue of Applied Optics.

[. Li A v r'T" - I (AFSC)
. AFSC

- . , .' Chief, TccbnlicXl lzformitian DivisloQU

C r . M A : J KP11 ~) Chief,_____________I_1_f_______ion _Divisio

II. ARCHITECTURAL STUDIES

A. Background

The combination of residue arithmetic and optics was prompted by

the realization that the cyclic nature of' the residue number system can

be mimicked by various physical phenomena. Our initial investigation

resulted in a genealogy of possible approaches as shown in Table 1. In

an effort to evaluate the relative advantages of' the various approaches

we studied the physical switching mechanisms ultilized by each approach.

Our findings are summarized in Table 2. Speed, possibility of integra-

tion, and cost were used as some of' the criteria. These results were

then incorporated into an overall evaluation of' the basic approaches, as

summarized in Table 3 ~

The approaches listed in the preceeding table involve a direct mim-

icking of the residue system. Some mathematical insights have enabled us

to relax some of' the restraints on these technologies. One simplifica-

tion was the realization that any cyclic shift can be synthesized from a

binary decompostion of shifts. As an example, a cyclic shift of 7 is

equal to a shift of 4s, a shift of 2, and a shift of 1. This result

reduced the type and number of shifts needed.

Another important finding was that the non cyclic maps needed for

multiplication can be generated with a fixed pre-permutation, cyclic

shifts, and a post-permutation [Ref. 1, P. 36]. This allows technol-L

ogy that was previously only capable of performing cyclic shifts to also

0 Tables 1, 2, and 3 prepared by Dr. Yoshito Tsunoda of Hitachi
Ltd. during his stay at Stanford from 1976 thru 1977.

-2-

-4 0

M uJ

ca -,4
cu w) (1) '

aj -- 4 C

4 W

z~~C u I 0 (
W 4 E 0. A

uu CuI-4 C u U Cu

4 14 M- wu wu (V
ft3 Cu Cu cU)> co

Cu 0 + *Hq -4 mu zu Ai
o 0 0 -C 0 0

-1 -44l

U 14-4 41. 0 ~
::a Cu14-I Ia

in Cu 04 0 0J
04 rn4 *- !

C) 41 UCuC

U~~ C)co

C4 a- I) *H -. 4C
-4 4- C -4 . n C
E) 4-1 0, i 4.U

In 9w l ii 4
4--4

-44C

C-,H I___

4

'-4 0 0 0

0 1 0 0 0

w. 00 00 -4'4 0 ~ 4 ~ 4 t-C

0 md co ri rz rz E! 1 E

>. C.) C.nd

0) ~ ~ ~ ~ ~ c C.) C) C,4C) i d -4-4
> >C! >CC C C

wi r-4 HH -H'-4 *

~ x x .)f~ X C

C 1i-4 .- i.4 -

0 0

4- 1

-4. 4J

Z 0 -4 C) "0 "0 r) . -
n- *H 4 Cd Cd 0 0 C ~ d C d 0 C

CO0 C. vi cl 0 0 m l m 0 cl

CL4

--1 4~ 0 0 * 0 0 0 0 0 0

., '44 0 0 0 Cd 0 0 0 co 0 0 o

> 0C -141
o E-lci c

r4Lcic cC c

0A 0 i CD

L))

a)) 4-

u 04 C) UCO) cn

*,4C V) a) cC L) u) '-

C WC/ ;l4 C: C'D ? ~ -44 ~ ~
cC 0 CD C

0 -$-4

C) 00 1 C
.. 4 .) CCC
4) -v -v M-~- u -4 C

CD ca 0 a)C ca m~ C
~ '0 -' -. :F:. 0- " d :na- -~

Cd (v. C)I .. C O -cl

-4-

perform multiplication. These technologies could then perform decoding

to mixed radix as well as other more complex computations.

These findings formed a foundation for a second generation of

implementations. Our efforts had been directed at mimicking cyclic

shifts with physical cyclic shifts. Such shifts can also be accom-

plished by several indirect means.

The first such approach was the off diagonal switching device [

Ref. 1, p. 34]. Mathematically, this approach relies on the fact that

the partitioning of an ordered set, the reversal of the elements in each

of the two subsets, and the reconcatenation of the two sets results in a

cyclic shift in reverse order. As an example [0,1,2,3,4,5,61 would be

partition into {0,1,2,3} and {4,5,61. Each of these subsets would then

be reversed. The result is {3,2,1,01 and {6,5,41. Recombining these two r
subsets would result in {3,2,',0,6,5,4} which can be seen to be the

reverse of (4,5,6,0,1,2,31 which is a cyclic shift of 3. The primative

operations in this type of cyclic shifter are a partition , reversal,

and concatenation. This finding extends the types of technologies that

are capable of performing cyclic shifts. A simple conceptual example is

shown in Fig. 1(a), in which two lenses are used to perform a cyclic

spatial shift.

Another second generation mapping device is the "amida kuzi"

approach (Ref. 1, p. 41]. The mathematical basis of this approach is

that any permutation (1-to-I mapping) can be accomplished with only
C.

interchanges between neighboring elements. As an example, a cyclic shift

of 3 of the set (0,1,2,3,4,5,61 can be accomplished by modifying the

order with neighboring interchanges to {0,1,2,A3.,5,61 to

-6-

wOro

4j_

Q)u

Q) 4 a)enr-0 0)

Sc

S-u
j- 0 0 0

4 40 0 0 m m

0

uJ u 0 ' ' 0 71
a m 0 ra
u 0

•-4 t -40

0 "

z
0

0~ '03 '0 m

-- 0 0 "0 I 0 " "- 0 0

w, :1 ,--

z *-4 0 '' 0

I

Um

W U C: z
w 0 aI c

•) ' 1-- b 3, 0 CC '0 C 0

a I U -) I .

00

0.
m) 4j .0 ,4

- 0 H I '

w w- 0 -Z 0c

0 3

1 2
2 1
3 0
4 6
5 5
6 4

(a) CYCLIC SHIFTS WITH REVERSALS

0 4

1 5

2 6

3 0

41

5 2

(b) CYCLIC SHIFTS WITH INTERCHANGES

FIG. 1: SECOND GENERATION SHIFTERS

(I7

-7-|

0 . _ to {0,.1,5La,.L2.} to { to {, ,.,2,3}

to finally [4,5,j&,1,2,3}, which is a cyclic shift of 3. The primative

operation of this type of cyclic shifter is a pairwise interchange. This

finding also extends the types of technologies that are capable of per-

forming cyclic shifts. A simple conceptual example is shown in Fig.

1(b), where couplets of lenses are used to perform interchanges for a

cyclic permutation.

These second generation approaches to performing permutations

extend the range of technologies to be considered. This varity makes it

more difficult to focus on any "best" approach.

In an effort to gain a better perspective, this year's efforts were

devoted to examining both the potiental and limitiations of using vari-

ous technologies. Phrased in another way "given a certain technology

what can and cannot be done with it?"

-8-

-,

B. Given A CertiAn Technology Ma. nk DMIt?

The potential of such systems is dependent on the types of problems

that it can solve and the throughput (data samples/sec) with which it

can solve these problems.

Some of the problems that seem attractive for a residue approach

are inner products, summation, and determinate evaluation. They are

representative of many of the problem-, in signal processing. They also

provide a convienent benchmark for com~parisons with more conventional

computational approaches.

A residue approach is capable of very large throughputs. There are

two fundamental ways of achieving this goal. One appoach relies on

speed while the other relies on parallelism. These two architectural

strategies favor different technological traits. The overall goal is to

relate the characteristics of a given technology to its performance on a

given problem using a given architectural approach. This will help to

define the appropriateness of a given technology and also to quantify

the relative merits of the a residue and conventional computational

approaches.

-9-

C.MoulrPrcesosPielne ~yMoul J& abi

A modular processor pipelined by moduli is shown in figure 2. This

architectural approach relies on ultilizing speed to achieve high

throughputs. We refer to this approach as the "rabbit" approach or as a

cascaded number theoretic processor. The processor works in much the

same way as an assembly line. The coefficients of a desired calculation

-are placed on the data bus at the left. The MOD X processor takes these

coefficients and produces the modulus X equivalent of the answer for the

desired calculation. This answer is also one of the mixed radix coeffi-

cients of the answer; it is passed, along with the coefficients of the

calculation, by the data bus to the MOD Y processor. This processor

uses the coefficients along with the previously determined mixed radix

coefficients to compute another mixed radix coefficient. Meanwhile the

MOD X processor is processing the coefficients of another calculation.

This process continues. Each modular processor uses the coefficients

along with all the previously determined mixed radix coefficients to

produce another mixed radix coefficient. What emerges from the data bus

is a mixed radix version of the answer to the desired calculation. The

throughput rate of this pipelined processor is the reciprocal of the

maximum modular processor time. The last processor usually takes the

longest since it has to consider the results of all the previous proces-

sors. The latency, the time it takes for a given calculation to complete

this assembly line, is the product of the number of processors and the

maximum processor time. The accuracy or range of such a processor

depends only on the product of the moduli used. If a processor is

designed with many small moduli rather than a few large moduli then the

latency will be larger because there would be more modular processors.

-10-

low

input

FIG. 2: PIPELINING BY MODULI

The throughput rate of this process is independent of the accuracy. This

is different from conventional computational approaches.

The throughput of this type of system is dependent on the maximum

modular processor time. For analytical purposes it was useful to estab-

lish sime basic building blocks for modular processors. By studying the

behavior of these simpler structures the behavior of the modular proces-

sors can be synthesized and the overall performance of such systems

predicted. The basic building blocks are shown in Fig. 3. The opera-

tion of each of the building blocks for a given technology can be

characterized by two parameters. One is the set time; this is how long

the unit needs to get ready. The other parameter is the propagation

time; this is the time needed for a signal to propagate through the dev-

ice once it has been set.

The first unit is a man , i.e. a fixed permutation that needs no

set time. The time needed to propagate through the map is denoted as

t
p.

The next unit is a permutation Drimative. It either permutes the

incoming signal or bypasses it. It can be viewed as a switching mechan-

ism that directs the signal to one of two fixed maps. The switching

mechanism has a set time associated with it, which is denoted as t5.

The signal has to then propagate through the switching mechanism as well

as through one of the two maps. This time is denoted as t
pp.

The rest of the units can be constructed from these two basic dev-

ices and thus have set and propagation times that can be easily derived.

The function of a residue a r is to perform modular addition.

- 12 -

UNIT NAME SET TIME PROPAGATION TIME

4MAP 0tp

PERMUTATION *
PRIMITIVE s pp

RESIDUE * + log m I t
AiDDER t + t]lg~~t

s m2 i pp

UTRESIDUE t + t -2t + [t + t
MULTIPLIER s m p 2 pp pp

n RESIDUE *ENCODER t Flog2.Nlt
ENCODER s 2 pp

RESIDUE t + t flog mIt
SUBTRACTOR s m pp

If the set signal is optical then an additional detection

time of td seconds is needed.

FIG. 3: BUILDING BLOCKS

"I1

It's structure is shown in Fig. 4. It consists of a cascade of permuta-

tion primatives that are controlled by an action table implemented with

conventional electronic logic. The action table for a modulus 7 adder

is shown in Fig. 5 and Table 4. The columns of the table represent the

maps of the various permutation primatives. The rows represent the

number to be added. If the number to be added is 5 then that row of the

action table indicates that the permutation P(X) = X + 4 and the permu-

tation P(X) = X + 1 must be activated. Since the permutation primatives

are cascaded this will be equivalent to a permutation of P(X) = X + 5.

Such an action table is a simple table lookup and can be implemented

with one level of logic. The set time would thus be the time for one

level of logic, tl, and the set time of the permutation primatives, ts.

The propagation time depends on how many permutation primatives are cas-

caded, which in turn depends on the number of binary bits needed to

represent the modulus. The propagation time would be log2 herer02miltpp

mi is the modulus and the half brackets indicate the next larger

-integer.

The structure of a residue subtractor is identical to that of a

residue adder, except that the action table is modified. Such an action

table for modulus 7 subtraction is shown in Table 5. Modular subtrac-

tion is equivalent to addition of a modular complement. To subtract a

value of 5 , the permutation P(X) = X + 2 must be activated, since 2 is

the modular complement of 5 for modulus 7. The set and propagate times

are identical to those of a residue adder.

The structure of a residue mi er is shown in Fig. 6. It con-

sists of two fixed maps, several permutation primatives, and an action

- 14 -

PP0 Pp b PP

10

ACTION TABLE

FIG. 4: RESIDUE ADDER

Log 2 m outputs

+ + +

ACT ION TABLE

T T I T T
0 1 2 3 4 5 6

m.i inputs

FIG. 5: ACTION TABLE FOR RESIDUE ADDER

-15

.<--

+ + 4-

II II iI

0 0 0 0

1 0 0 1

2 0 1 0

3 0 1 1

4 1 0 0

5 1 0 1

6 1 1 0 0

TABLE 4: ACTION TABLE

FOR MODULUS 7
ADDITION

-<.- .~ ,-4
+ + +

- x

0 0 0 0

1 1 1 0

2 1 0 1

3 1 0 0

4 0 1 1

5 0 1 0

6 0 0 1

TABLE 5: ACTION TABLE
FOR MODULUS 7
SUBTRACT ION

-16- *

ACTION TABLE

FIG. 6: RESIDUE fULTIPLIER

X M4 X I

0 0 0 0 1

1 1 0 0

2 0 1 0
3 0 0 ol

4 0 0 1 0

TABLE 6: ACTION TABLE FOR

MODULUS 5 MULTIPLIER

-17-

0

2

3

4

Pre C) -4 Post

Permutation Permutation

2M

FIG. 7: PERMUJTATIONS FOR
MODULUS 5 MULTIPLIER

0 0 0 0_

3 1 3 -

Mi pp p 2X

FIG. 8: EXAMPLE OF MODULUS 5 MULTIPLICATION

-18-

table. The fixed maps perform the equivalents of modular logs and anti-

logs [Ref. 1, P. 36] 0. The right-most permutation primative performs

the permutation P(X) = 0 which covers the case of multiplication by

zero. The other permutation primatives provide various cyclic shifts.

The permutations needed for a modulus 5 multiplier are shown in Fig. 7.

The action table is shown in Table 6. To multiply by 3 the action table

directs permutation primatives PP1 and PP2 in Fig. 8 to be activated.

If a signal propagates through map M1, permutation primatives PP and

PP29 and map M2, then the permutation will be equivalent to the desired

permutation of P(X) = 3X. The set time of such a unit would require a

time of tI for the action table and a time of t5 to set the required

permutation primatives. The propagation time varies with the size of the

moduli since this influences the number of permutation primatives needed

to provide the required shifts. The propagation time would be

2t + t

tp + r109 2 (mil)Itpp + pp,

The structure of a inar t residue encoder is shown in Fig. 9.

It consists of a cascade of permutation primatives. If the number to be

encoded is in the form an2n + an- 12n
- 1 + ... + a12 + ao, then the permu-

tation of the permuation primative PPn is P(X) = X + 2n. The various

bits of the number to be encoded are used to activate the associated

permutation primative. Since all the permutation primatives are set in

parallel, the set time is just ts. The propagation time depends on how

many permutators are cascaded which in turn depends on the number of

bits in the number to be encoded. The propagation time is thus

[log2 Nmaxitpp , where Nmax is the largest number to be encoded.

Also see pages 118-121 of Residue Arithmetic And Its APplica-

tions . Comguter Technology by N. S. Szabo and R. I. Tanaka,

McGraw-Hill 1967

- 19 -

a 0 a1 a , a

FIG. 9: BINARY TO RESIDUE ENCODER

+ + +
II II II "

0000 0 0 0

0001 1 0 0

0010 0 1 0
0011 1 1 0
0100 0 0 1
0101 1 0 1
0110 0 1 1
0111 0 0 0
1000 1 0 0
1001 0 1 0
1010 1 1 0
1011 0 0 1
1100 1 0 1
1101 0 1 1
1110 0 0 0
iiii 1 0 0

TABLE 7; MODIFIED ADDER
ACTION TABLE FOR
ENCODING

- 20 -

IMProl7

Encoding can also be accomplished by modifying the action table of

a residue adder. A modified action table to convert a ~4 bit binary

number into its modulus 7 equivalent is shown in Table 7. As an exam-

ple, to encode 1010, which is 10 in binary, the permutations P(X) =X +

2 and P(X) =X + I have to be activated. This produces a permutation of

P(X) =X + 3. This is correct since 1010 has a net contribution of 3 for

modulus 7.

By properly incorporating the effects of the weighting factors

associated with the various digits of a number, an action table can be

implemented to encode any n bits of a number. Several of these units

can be cascaded to encode all the portions of a number. The set time is

the same as that of a residue adder. The propagation time would depend

on how many such units were cascaded.

It has been assummed in the previous discussion of building blocks

that the control signals for the building blocks were electrical. In

some of the subsequent discussion the control signal will be optical. An

additional detection time of t d seconds would have to be added to the

set times of the devices to represent the time needed to convert from an

optical to an electrical signal.

These building blocks can be assembled to form modular processors

capable of solving certain types of problems.

(1) Summation Prcssr

The structure of a modular processor that perfo.'ms summation is

shown In Fig. 10. The coefficients of the desired summation are tapped

-21-

FIG. 10: SUMMPATION PROCESSOR

FIG. 11: INNER PRODUCT PROCESSOR

-22-

off the bus and used to set the encoders. The subtractors and permuta-

tion primatives form the mixed radix decoding section *. They use the

previously determined mixed radix coefficients to convert the present

result into another mixed radix coefficient. All the building blocks can

be set at the same time. The pipelined structure shown in Fig. 2 insures

that all the coefficients and previously derived mixed radix coeffi-

cients are available to each modular processor. The maximum processor

time for a modular summation processor would be

tmax (ts + td) + Ndrlog2 Nmaxltpp + (Nm -I1)(iog2 miltpp + tpp) + td

: set encoders, subtractors, and permutators) +

propagate through encoders, subtractors, and permutators) +

detect),

where Nd is the number of points to be summed and Nm is the number of

moduli used. The throughput rate of such a pipelined system would be the

recriprocal of tmax. This equation is significant in that it connects tne

characteristics of a technology with the performance of a system

designed to perform a particular type of computation. This connection

will aid in evaluating the appropriateness of a particular technology

for a particular type of problem.

(2) Inner Product Processor

The structure for a modular processor that performs inner products

is shown in Fig. 11. The coefficients of the desired inner product are

* The permutation primatives can be replaced with fixed maps if

the error correcting feature described below is not desired. To

correct an error, the suspicious result from a previous modular
processor is excluded from the decoding process by instructing the

associated subtractor to subtract a 0 and the associated premuta-

tion primative to bypass, rather than multiply, the result by a

constant. This operation would perserve the correctness of a par-

ticular calculation at the expense of a reduced range.

- 23 -

tapped off the data bus and used to set all the encoders. The previously

derived mixed radix coefficients on the bus are used to set the subtrac-

tors and permutation primatives of the decoding section. Signals pro-

pagate through all the encoders. The signals of one vector are then used

to set the multipliers. The signals associated with the other vector

then propagate through these multipliers. These signals then set all the

adders. A signal then propagates through all the adders and the decoding

section. The maximum processor time for a modular processor that per-

forms inner products would be

tmax =t s + Flog 2 Nmaxltpp + (ts + ti) + (2tp + Flog 2 miltpp + tPP)

+ (ts + t1) + NdFlOg 2 miltpp + (Nm-l)(rlog2 miltpp + tpp) + td

(set encoders) + (propagate through encoders) +

(set multipliers) + (propagate through multipliers) +

(set adders and subtractors) +

(propagate through adders and subtractors) + (detect).

If it is assummed that tpp is much smaller than ts or td, then the

length of the inner product is not a significant factor. The processor

time would then be dominated by the three set times.

(3) Determinant Processor

The evaluation of determinants are useful in the computation of

matrix inverses. They are the sums and differences of multiple products.

The structure of a modular processor to evaluate determinates is sh4n

in Fig. 12. The coefficients of the desired determinant are tapped off

the data bus and used to set all the encoders. The previously derived

mixed radix coefficients are used to set the decoding section. Signals

-24-

X E E E E

E E x

FIG. 12: DETERMINATE PROCESSUR

E E

E E

FIG. 13: SQUARED DISTANCE PROCESSOR

-25-

propagate through all the encoders in parallel. These signals are used

to set the multipliers. Signals propagate through all the multipliers.

These signals are used to set all the adders. A signal then propagates

through all the adders and the decoding section. The maximum processor

time for a modular processor that evaluates determinants would be

tmax ts + rlog2 Nmaxltpp + (ts + tl) +Nd(2tp + ro02 miltpp + tpp)

+ (ts + tl) + NdrlOg 2 miltpp + (Nm-1)(rlog2 miltpp + tpp) + td

= (set encoders) + (propagate through encoders) +

(set multipliers) + (propagate through multipliers) +

(set adders and subtractors) +

(propagate through adders and subtractors) + (detect), r
where Nd is the dimension of the determinate.

This processor time is approximately equal to that of the inner

product processor. It is also dominated by three set times. The only

difference is that in this processor, a signal has to propagate through

several multipliers rather than just one as in the case of inner pro-

ducts. The larger the matrix involved the more multipliers have to be

cascaded. If the propagation time, t pp is assumed to be much smaller

than that of the set time, ts , it can be seen that the size of the

matrix does not strongly influence the processor time.

(4) Squared V r Distance Processor

The sum of the squares of the differences of two vector components

is used as a distance evaluator in many optimizing or decision algo-

rithms. A modular processor to compute such squared distance is shown in

Fig 13. The unique feature is that the signals propagate through a

- 26 -

fixed map before they are added. This map performs the polynomial

transform P(X) = X2. This example is used to demonstrate that any poly-

nomial with integer coefficient and exponents can be used in these pro-

cessors. The maximum processor time for a modular processor that com-

putes such distances would be

tmax = ts + rlog2 Nmaxltpp + (ts + tO) + Flog2 miltpp +

+ (ts + t) + Ndrlog2 miltpp + (Nm-1)(Flog2 miltpp + tpp) + td

= (set encoders) + (propagate through encoders) +

(set subtractors) + (propagate through subtractors) +

(propagate through map) + (set adders and subtractors) +

(propagate through adders and subtractors) + (detect).

(5) Influences af Technology 2n Processor Performance

As mentioned previously, the expressions for maximum processor time

derived for the various modular processors provide a means of evaluating

the effects of certain technological approaches to certain types of com-

putation problems.

As an example, suppose that the maps were implemented with wire

interconnections and the permutation primatives were constructed using

field effect transistors (FET's) as switching devices as shown in Fig.

14. As discussed previously, the other building blocks can be con-

structed from these basic elements. If the set time, t., is assummed to

be 10 nanoseconds and the propagation time, t of each building block

is assummed to be 5 ns. then the throughput rate for inner products of

vectors with 100 elements of arbitrary accuracy would be approximately

r 1/[3(10 ns) + 100(5 ns

- 27 -

-28-

2 mhz.

This would be equivalent to about 2 million inner products a second.

Since each inner product consists of' 100 multiplications and 102 addi-

tions this is equivalent to 202 x 2 x o6or about 400 million arith-

metic operations a second.

The performance of' an optical version of' the same processor can be

examined in a similar manner. If Bragg coupler technology is considered,

then a set time for each building block of 30 ns and a propagation time

of 200 ps can be assumed. This would result in a throughput of' approxi-

mately

r =1/ 3V 30 ns)+ 100(200 ps)

=9 mhz.

This rate represents 9 million inner products a second, which is is

equivalent to 202 x 9 x 106 =1,800 million arithmetic operations a

second.

The high throughput of' residue processors used as examples is not

due to the technology but rather the architecture. The set times of' 10

and 30 ns are quite slow compared to the switching times of' present

electronic logic. The throughput is due to both a mathematical and

structural advantage. Mathematically, not having to deal with carries

greatly speeds up addition and multiplication. Structurally, the proces-

sor is highly parallel and very effectively pipelined.

-29

!I
D. Modular Processors Pipelined JLX Bak The Turtle)

Modular Processors can also be pipelined by banks. This approach is

referred to as the "turtle" or as a parall l number theoretic processor.

Its structure favors different technological traits. The rabbit

approach relies on speed while the turtle approach relies on parallelism

to achieve large throughputs.

The overall structure of such processors is shown in Fig. 15. The

data to be processed is fed to the modular encoders. The encoded values

are then given to modular processors. The modular results are then fed

to a residue-to-mixed-radix converter. The mixed radix equivalent is

then given to a mixed-to-normal radix converter that produces a normal

radix equivalent of the answer to the desired computation.

The processor relies entirely on table lookup. The tables can be

implemented with read only memories. A modular 5 addition table is shown

in Table 8. Neither the operands nor the sum ever exceed 4 in value.

The operands and sum can thus each be expressed with 3 bits. This table

can be implemented with a read only memory by combining the 3 bits of

each operand to form an address and storing at that location a 3-bit

representation of the sum. Such a table is shown in Table 9. As an

example, to add 4 and 3 these operands are first expressed in binary as

100 and 011. These are combined to form the address 100011. Stored at

this location in the memory shown in Table 9 is 010, which is the

modulus 5 equivalent of the sum of 4 and 3.

Similar tables can be constructed to perform modular subtraction,

multiplication , and polynominal transforms for any modulus.

- 30 -

WOW-- - - -- - - - -- -- - - - - - -

17 MIXED TO NORMAL RADIX

RESIDUE To MIXED RADIX)

MODUhLAR PROCESSOR MODULAR PROCESSOR MODULAR PROCESSORI.E
EE E E E E E

FIG. 15: TURTLE PROCESscp

-3) -

+ 0 1 2 3

o 0 1 2 3 4
1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

TABLE 8: MODULUS 5

ADDITION TABLE

ADDRESS CONJT ADDRESS CONT ADESCN
000000O xouu 010101 xxxx 10ioi0 xxxx000001 X0ol 0lollo xxxx 101011 xxxxiiutJlu XiJ1o 010111 XXXX1000 XX
o000(11 X100l o 11uj x 011 101101 XXXXOOlo X00(lluol Xl60 1b1110 Xxx(Juolul xxxx 0ll0!0 X000 lulll.1 XXXX000110 xxxx 011011 X~ol 11uu XXXX000111 xxxx 01110t) x~o l0ou. X~XXooluUo X~ol 011101 xxxx 110010 XXXX001001 Xulo 011110 XXXX 110011 XXXX001010 X011 011111 xxxx 11010 xxxx001011 xi0o 100000 X100 11010j. xxxx001100 x000 100001 xo00 110110 xxxx001101 XXXX 100010 X001 110111 XXXX001110 XXXX 100011 xloI 111000 xxxx001111 XXxx 100100 X01j. 111001 xxxx010000 Xlo1 100101 xxxx 111010 XXXx010001 X011 1i30110 XXXX 111011l xXx010010 X100 100111 xxxx 111100 XXXX010011 X000 101000 xxxx 111101 xxxx010100 X~ol 101001 XXXX 11111D XXXX

111111 Xxxx

TABLE 9: ROM VERSION OF MODULUS 5
ADDIT ION

-32 -

(1) Binary toQ Residue Encoders

Tables to perform encoding from binary to re3idue notation can be

performed by tables constructed using three basic strategies.

One approach is by direct table lookup as shown in Fig. 16(a). The

number to be encoded is used as the address while the content at this

location is the desired modular equivalent. This approach is only prac-

tical for encoding relatively small numbers (less than 10 bits).

A second method involves a cascaded approach as shown in Fig.

16(b). The bottom most node performs a direct table lookup to encode a

portion of the number while the subsequent nodes encode other portions

and adds the equivalent of this new portion in a modular manner to the

result from the previous node. This chaining process can be extended to

incorportate any number of bits.

A final method involves a parallel approach as shown in Fig. 16(c).

Portions of a number are encoded by direct table lookup. The equivalents

of these portions are then added together in a modular manner. This

method can be extended to incorporate any number of bits.

These three basic approaches to encoding can be modified to include

the encoding of negative numbers represented in either sign magnitude or

two's complement format.

Once the data has been encoded into their modular equivalents it

can be used to perform computations in a modular manner.

(2) Summatin Processor

- 33 -

E+

FIG. 16a: E E
DIRECT ENCODING

FIG. 16c:

PARALLEL ENCODINGf

E

E

E

FIG. 16b,

CASCADED ENCODING

-34-

The structure of a modular processor that performs summation for a

particular modulus is shown in Fig. 17. Each of the nodes represents a

read-only memory. The data entering the bottom of a node is used to

form an address. The content of the node at that particular address

emerges at the top of the node. If the modular equivalents of the 16

numbers to be summed are fed to the bottom row of nodes then the modular

equivalent of their sum will eventually emerge from the root node (top

most node). Such a processor can be constructed for any modulus by pro-

gramming the ROMs in the proper manner.

(3) Inner Product Prceso

A modular processor that performs inner products is shown in Fig.

18. The boxes represent encoders, the nodes with an X represent modular

multiplication ROMs, and the node with a D represents a delay node ~

The modular equivalents of the vectors to be processed are fed to the

bottom row of nodes. The modular eqivalent of the inner product will

emerge from the root node.

A modular processor that evaluates determinants is shown in Fig.

19. The main difference from the inner product processor is that more

multiplier nodes are needed. The modular equivalents of the matrix coef-

ficients are fed to the bottom row of nodes. The modular eauivalent of

the determinate will emerge from the root node.

*A delay node duplicates the bits of its address on its output at
alater time. This delay maintains synchronization between the

various portions of a calculation so that they merge correctly.

-35-

FIG. 17: MODULAR SU~i1AT1ON PROCESSOR

+ +

z y1 z2 y2 z3 3

FIG. 18: MODULAR INNER PRODUCT PROCESSOR

36-

+

X X x

ZI Y1 Z2 Y2 Z3 Y3

FIG. 18.1: EXPRESSION EVALUATION TREE
OF AN INNER PRODUCT

+ +

X X X

FIG. 19: MODULAR DETERMINANT PROCESSOR

- 37 -

A

(5) Sguared Distance Processor

A modular Processor that computes the sum of the squares of the

differences between the components of two vectors is shown in Fig. 19.5.

The nodes denoted with a P perform the integer polynominal transform

P(X) = (X-Y)2 *. The modular equivalents of the vectors are fed to the

bottom row of nodes. The modular equivalent of the sum of the squares of

the difference of the vectors will emerge from the root node.

(6) Other Computations

To generalize, a modular processor can be designed to perform any

combination of additions, subtractions, multiplications, or integer

polynominal transforms. The structure of such a processor follows

directly from the expression evaluation tree of the desired computation.

The expression evaluation tree of the inner product processor in Fig. 18

is showr? in Fig. 18.1. The only difference is that a delay node has been

inserted to equalize the terminal path lengths to insure proper syn-

chronization of the different portions of the computation.

(7) ovn&r j.j n FrQm Residues I Mixed Radix

A given computation is done in a modular manner by several dif-

ferent modular processors. These modular results are then rewoven

together to construct a mixed radix version of the answer. This mixed

radix conversion can be performed by various integer polynomial

transforms [Ref. 1, p 17-251. The structure of such a converter is

a Other processors can be designed using more complex integer po-
lynominal transforms. The tables required are no more complex that

those required for addition.

- 38 -

FIG. 19.5: MODULAR VECTOR DISTANCE PROCESSOR

a0 a I a 2

D D P

D P P

FIG. 20: RESIDUE TO MIXED RADIX

CONVERTER

- 39 -

shown in Fig. 20. The nodes on the bottom row represent the root nodes

of three modular processors. The nodes denoted with a P perform the

required polynominal transforms. Delay nodes temporarily store the

coefficients as they are produced. What emerges are the mixed radix

coefficients of the answer to the desired computation.

(8) Conversion From A Mixed To A Normal Radix

The mixed radix version of the answer is sufficient for sign and

relative magnitude determination. In some situations it is desirable to

further convert the mixed radix into a normal radix number. An overview

of such a converter is shown in Fig. 21. Each value of each mixed radix

coefficient has a normal radix equivalent. These equivalents are

recalled from storage a~id added to produce a normal radix equivalent. To

simplify this addition, a carry save adder strategy is employed. This

reduces, without carries, the equivalents to be added to only two. A

carry propagate adder is then used to add this final pair. The storage,

carry save adders, and carry propagate adder can be implemented in a bit

slice format with read-only memories.

The structure of the satorage section is shown in Fig. 22. The

nodes on the bottom row are the output nodes of the residue to mixed

radix converter shown in Fig. 20. The mixed radix coefficients are dis-

tributed to various storage nodes, denoted with an S, that store multi-

bit slices of the normal radix equivalents. The top left three nodes

store bits 11 through 8, 7 through 4I, and 3 through 0 of the equivalent

of the mixed radix coefficient a0 . The other nodes store multibit slices

-40-

M~IXED TO NORMAL RA'DIX

NORMAL RADIX

CARRY PROPAGATE AD=ER

CAR RY SAVE ADDER

STORAGE

MIXED RADIX

FIG. 21: OVERVIEW OF MIXED TO NORMAL
RADIX CONVERTER

A0!7:41 (A 1+A 2) [11:81 (A 1+A 2)[t3:01

A

A

A0 1

FIG. 22: STORAGE OF NORMAL RADIX
EQUIVALENTS

-41-

of the sum of teequivalents associated with the mixed radix coeffi-

cients al and a2. This pairing and pre-addition technique reduces both

the storage that is needed and the number of equivalents to be added.

The cary gav ade section, which reduces a 3 number sum into a 2

number sum in parallel without using carries, is shown in Fig. 23. The

nodes denoted with an A perform conventional binary addition on multibit

operands. These adders are implemented with tables. A table for 2 bit

operands is shown in Table T15 of the appendix. Each adder node han-

dles a 2 bit slice from each of the three numbers to be added. It pro-

duce's a 2 bit sum and a 2 bit carry. The sum bits from all the adders

are combined to form on~e number while all the carry bits form another

number. Two zero bits are padded onto the number synethized from the

carry bits to perserve the proper significance of these carry bits. A

sum of 3 numbers can thus be reduced to a 2 number sum. Several such

carry save adders can be used to reduce a sum of many numbers to only a

sum of two numbers.

The remaining 2 numbers are added with a carry propagate adder. A

car .2rsopgat ade is shown in Fig. 214. The two numbers are added in

multibit slices from least to most significant slice. This allows a

carry to propagate between the slices. The nodes denoted with an A are

the same binary adders used in the carry save adder. The nodes denoted

with a D are delay nodes to delay slices of the operands until they are

needed. Delay nodes are also used to delay slices of the sum so that

they emerge in synchronization.

(9) Synchrnu And Asnchnus urtlen Prcesor

-42-

C[13: 12] C[5: 4 C[3:21 C[1:01

S[11: 10I S[3:21 S[1:O1

00
A A A A A A

Z[11:10) Z[3:21 711.0]

Y[11:101 Y[3:21 Y[1:0]

X[11:10] X[3:21 Xjl 0]

FIG. 23: CARRY SAVE ADDER

-43-

0 0 .-4

-4

r~j~

CN

cj~

00 iiH
C

C
-4

-4

-4
-4 £

- 44 -

An overview of a turtle processor designed to perform summation is

shown in Fig. 25. The bottom row of nodes consists of encoders. The

next two rows consists of adders. Each of three clusters of nodes at

the bottom represent different modular processors. The fourth and fifth

row form the residue-to-mixed radix converter. The sixth row contain

the storage units for the mixed-to-normal radix converter. Since in this

simple example there are only two normal radix equivalents to be added

a carry save adder section is not necessary. The top 6 rows of nodes

form a carry propagate adder.

This version of the processor is designed for syrchronious opera-

tion. The ROMs used in the processor must either be input or output

latchable. The data to be processed is fed to the bottom row of

encoders. On a clock signal these memories are read and the results are

used as the inputs for the next row or ROMs. The data for another com-

putation is then fed to the encoders. On each subsequent clock cycle the

• data of a particular calculation proceeds to s,. --quent rows of the pro-Scessor in a Roman-phalanx- like manner. The results of each calculation

will eventually emerge from this pipelined processor. The throughput

rate would be the recriprocal of the ROM cycle time.

A version of the processor can also be designed for asynchronous

operation. Such a structure is shown in Fig. 26. In this case the ROMs

are not latachable. The data for a particular computation is placed at

the encoders. The results just propagate through the system. There are

many races but since there is no feedback or memory in the processor

none of the races are critical. The answer is derived in a Darwinian

manner. The unit can be viewed as one large combinatoric circuit.

D4 D D D A D D D

000 0 0

__ T2 -. 3 -1 S"-

/,IE 11 E E E H , E E E

T5 T6 T

FIG. 25: SYNCHRONOUS NUMBER THEORETIC
PROCESSOR

-46

T15

I.A

4 7

Any computation involving any combination of additions, subtrac-

tions, multiplications, or integer polynominal transforms can thus be

accomplished with a combinatoric circuit.

(10) Exml _U A Turtle Procsso

As an example of how such turtle processors would operate, the

tables representing each of the nodes shown in Fig. 25 and 26 are

included as tables in the appendix. An example of the sum of 13 + (-11)

+ 7 + (-17) is shown in Table 10. In six bit two's complement, this sum

is expressed as 001101 + 110101 + 000111 + 101111. Table T5 is used to

translates these values into their modulus 5 equivalents of 011, 100,I

010, and 011. 011 and 100 are then combined to form the address of

011100 which is translated by table TI into the modular sum of 010. 010

and 011 are summed in the same manner to produce 000. These two results

are then summed with table TI to produce 010. Tables T6 and T2 perform

this same procedure for modulus 7. The result is 110. Taoles T7 and T3

perform this same procedure for modulus 8. The result is 000.

The modulus 5, 7, and 8 results of 010, 110, and 000 are converted

to mixed radix by tables T8, T9, and T10. The modulus 5 and 7 results

are combined to form the address of 0101 10. Table T8 translates this

into 101. The modulus 7 and 8 results are translated by table T9 into

110. These results are then combined to form an address of 101110,

which is translated by table T10 into 111. This produces the mixed radix

coefficient a0 010, al 101, and a2 =1Il. Table T11 then produces

the normal equivalent of a0 , which is 0010. Tables T12, T13, and T14

produce slices of the normal radix equivalent associated with the pair

-48-

EXAMPLE

13 + (-I) + 7 + (-17)

001101 + 110101 + 000111 4 101111

MOD 5 011 + 100 4 010 4 011 T5010 + 000 11

MOD 7 110 + 011 + 000 + 100 T6
010 + 100 T2

1O T2

MOD 8 101 + 101 + 111 + 111 T7
010-- + TU 3

000 T3

MOD 5 MOD 7 MOD 8

010 110 000

010110 010000
T8 T9
101 110

101110
TIO
1

= 010 a1 = 101 a2 = 111

a [3:0] = 0010 T11
a 0 0010

a1a2[11:8] = 1111 T12
a a2[7:41] 1111 T13
aIa 2 [3:0] = 0110 T14
a a2 = 111111110110

111111110110 _ __ _
+ 0010

1111111 f I oi 1
00100 00 00101 00

"1p1 i 111/ 0110
400100 00 00100 10 T15

111111111000 = -8
= 13 + (-11) + 7 + (-17)

TABLE 10: EXAMPLE OF NUMBER

THEORETIC PROCESSOR

- 49 -

of coefficients al and a2. The result is 111111110110. These two

normal-radix equivalents are then added with binary adder nodes, as

represented by Table T15. The least significant slice of this sum is

00, 10, and 10. The 00 is the result of a null carry in for the least

significant slice. These operands form an address of 001010. Table T15

translates this into 0100. The first two bits are used as a carry slice

-while the last two bits form the sum slice. The carry is used as an

operand in the next more significant slice. The operands of this slice

are 01, 01, and 00. Table T15 produces a result of 0010. 00 is used as a

carry while 10 is used as the sum. This process is continued for the

other slices. The result is 111111111000, which is -8 in 12 bit two's

complement. This is the result of the desired sum of 13 + (-11) + 7 +

(-17).

(11) Accuracy

The processor is constructed entirely from 614 by 14 bit ROMs. It has

a range of -1140 to 139. By using larger ROMs larger moduli can be

represented and thus larger ranges can be achieved.

If 10214 by 6 bit ROMs are used, then the moduli 32, 29, 27, 25, 23,

19, 17, 13, 11, and 7 can be used giving a range of 144,403,552,893,600

which is about 247.

if 4096 by 6 bit ROMs are used, then the moduli 614, 61, 59, 57, 53,

51, 49, 47, 43, 41, 37, 31, 29, 25, 23, 19, 17, 13, and 11 can be used.

This would give a range of 127,290,7314,521,737,197,1468,723,265,600 or

about 296. Larger ROMs can be used to achieve even greater ranges if

desired.

5

The concept of' range is different in a residue number system. An

intermediate computation may exceed this range. It is only necessary

for the final answer to be within the range before it is converted into

a mixed radix number. In the literature this property is called "com-

pute through overflow". Thus the range need only be sufficient to

represent the answer. This can greatly reduce the range required for

certain types of computations.

(12) Thruxpu

A processor designed to compute inner products of 100 element vec-

tors where each element is 20 bits long, can be constructed entirely out

of 1024~ by 6 bit ROMs. If the cycle time of each FOM is 300 nanoseconds

then 3.3 million inner products can be performed a second (141300 ns.J

)Since each inner product consists of 100 multiplication and 102 addi-

tions this is equivalent to 663.3 million arithmetic operation~s a

second. The latency of each inner product would be 12.3 microseconds.

A processor using the same FOMs can be designed to perform inner

products on 1000 element vectors, where each element is 18 bits, at the

same throughput rate of 3.3 million inner products a second. In this

case each inner product consists of 1000 multiplications and 1013 addi-

tions. This would be a throughput of 6.71 x 109 arithmetic operations a

second. The latency would be 13.5 microseconds *

0 As a rough reference of throughput an IBM 370 can process about
4~ million instructions per second. Processors such as the CRAY - 1

and the ILLIAC IV can do up to 100 million instructions per second

in short bursts.

-51-

These processors can be constructed in a modular manner. A large

portion of the design of a conventional processor is consummed with the

layout. The typical procedure involves partitioning the circuit, laying

out the boards and specifying the blackplane interconnections. The tur-

tle processor is constructed entirely with 2 input and 1 output nodes, 3

input and 2 output nodes, and their interconnections. The nodes and

interconnection cables can be mass manufactured. The basic modules are

shown in Fig. 27. The top two modules represent different types of

nodes. On the bottom row the 1 input, 2 output module is a forked cable

which duplicates a signal. The 1 input, 1 output module is an amplifier.

Standardized cables would carry the information signals as well as util-

ities, such as the clock signal and the power between the modules. The

construction of such processors is reduced to specifying the pattern of

the nodal interconnections and the programming of the ROM of each node.

- 52 -

E. WXat B aAIhia LL .QDot Wth Opt ins?

The turtle processor performs many table lookups in parallel during

each cycle. Optical methods capable of performing many table lookups in

parallel can be conceived. The fundamental device in such an optical

processor would be an optical RCM. It is important for such a device to

produce an output that can be used as an input of another such ROM. In

other words, it should "produce what it eats". In optics the basic

informati n-carrying mechanisms are intensity , phase, frequency, or

spatial distributions of these quantities. A ROM based on intensity

would have to have as inputs various intensities and produce a predeter-

mined output intensity. No convienent implementation based on either

intensity, phase, or frequency has yet been found.

(1) Optical BDOJs

The most promising approach for an optical ROM is based on embed-

ding information on the spatial domain. The input operands of such a

device would be intensity distributions of light, I(x,y), and the output

of the ROM would also be an intensity distribition of light that could

be used as an input operand for another such ROM.

A block diagram of an optical ROM is shown in Fig. 28. Two or more

images, Iin(x,y), would be ANDed together to form an unioue image,

'addr(x,y). This image would be used to address an associative memory to

produce an output image, Iou t (x,y). This image could then be used as the

input for another such ROM.

(2) Opticl Addressing

-53 -

FIG. 27: MODULES FOR NUMBER THEORETIC
PROCESSORS

Input Image A

Image ASSOCIATIVEOurt
AND MEIImage

Input Image B

MR

FIG. 28: BLOCK DIAGRAM OF AN OPTICAL ROM

-54

The fundamental operation of locating or addressing anything any-

where, whether it is in a computer memory or on a road map, is the "AND"

operation. An address of 011 in a computer means that the 22 bit of the

address is 0 And the 21 bit is a I and the 20 bit is a 1. Unfortunately,

optical ANDs cannot be performed in a convienent manner; however an opt-

ical "OR" can.

If two or more binary images, I(x,y), are projected on a common

surface and thresholded, then the result will be the union or "OR" of

the two images, as shown in Fig. 29. With the help of some negations

contrast reversals), the ORs can be used to perform ANDs by means of

DeMorgan's law , A AND B = NOT(NOT A OR NOT B), as shown in Fig. 29.

The images to be ANDed are first inverted in contrast. These images are

then ORed by projecting them on 3 common surface and thresholding. The

image on the surfai-P q Irpr lnv-rtod in ,ontrast. This results in the

AND of the orginal ima.

It is impcrti'I 1 " i" ' images form a unique out-

put imagp. w.- .11 -onfuse the memory. This

uniqueness ir - . - '' . r a ia~s as shown in Fig.

30(a). Suppo ,- ntal dark bars could each

only be in one j, ... n of the OR of any of the

possible vertical ? '. , ' *n' p,:ajb1 horizontal patterns

will result in a uni-il '.rr. , rv'eprn happens to be a point

source that will provide a -orvienent address image for an associative

memory. The five verti-al and five horizont-!i patterns are sufficient

to each represent modulus 5 operands.

Images of the form of a dark vertical or horizontal bars are

- 55 -

_ • - ,- , ' ,. •4..

or

OPTICAL "OR"

0 r

FIG. 29: OPTICAL "AND"

~ 56 -

A B A or B not(A or B)

FIG. 30(a): UNIQUE INPUT IMAGES

A B C A or Bor C not(A or Bor C)

FIG. 30(b): UNIQUE CYCLIC IMAGES

~or orf

FIG. 30(c): OUTPUT IMAGES

-57-

K

suitible as inputs for any two input ROMs. This type of ROM is suffi-

cient to construct encoders, modular processors, and the residue-to-

mixed radix converter. If it is desired to completely convert the

result back to a normal radix, then 3 input and 2 output ROMs would be

required. This necessitates a larger variety of input and output

images. Such images are shown in Fig. 30(b). They have a cyclic struc-

ture. If the frequencies of the images are pairwise relatively prime,

then the OR, and negation and thresholding of such images will also form

a unique point source image suitable for use as an address.
1A

To generate the address image, the inversion of the OR of the input

images has to be accomplished. Several physical mechanisms can be used

to accomplished this. One method uses the Hughes Liquid Crystal Light

Valve.

One surface of the light valve is light sensitive. A distribution

of light on this surface will modulate the electric field across the

liquid crystal. This electric field in turn modulates the birefringence

of the liquid crystal. This change in birefringence rotates the axis of

polarization of a polarized read light beam impinging on the other sur-

face. The reflected light is analyzed with a polarizer. Depending on the

orientation of this analyzer the resulting image will either have normal

contrast or reversed contrast when compared to the image on the input

surface. The light valve would be used in a binary mode to achieve

thresholding. It is assummed that the bright portions of each input

image would be sufficient to saturate the photoconductor.

(3) Opical, BJ R Sto8age

-58 -

The associative memory of an optical ROM must associate an address

image with an output image. Such a memory can be holographic. The com-

plexity of the memory is considerably simplified by using address images

that are unique point sources. The output images to be associated with

a point source address image are of the form shown in Fig. 30(c). If

only mixed radix results are desired, then images of vertical or hor-

izontal dark bars would be sufficient. If conversion to a normal radix

is desired, then images with a cyclic or point-source pattern would be

necessary.

The operation of such a holographic ROM is shown in Fig. 31. Two

or more input images would be projected on to the surface of a Hughes

Liquid Crystral Light Valve. This image would then be inverted in con-

trast to form a point source address image. This point source would

address the hologram to produce an output image.

* (4a) Sytm Inegatin

Many of these ROMs can be placed side by side on a common surface.

Each portion of the surface denoting a ROM would OR its own input

images. All the O~s of all the ROMs would be inverted at the same time.

Each ROM will then have an appropriate address image for its correspond-

ing hologram. Rather than having a mosaic of holograms, the holograms

for all the ROMs can be amalgamated into one large hologram. This can

be done since the address images of each ROM remains spatially unique

even though the ROMs are placed side by side. Each point source address

image will produce an output image. Spatial offsets can be incorporated

into these output images. The output images can be positioned to be the

-59-

HologramOutput
Image

Iersion

Output
Images

FIG. 31: HOLOGRAPHI[C ROM

-60-

input images of other optical ROMs. The holograms would thus not only

store the information but also distribute it.

In order to construct an optical turtle processor, the output of

the ROMs must be used as inputs of other ROMs. What is desired concep-

tually is shown in Fig. 32. The output of the ROMs would be delayed a

sufficient amount of time to allow the inversion mechanism to recycle.

These delayed output images would then be used as input images. Unfor-

tunately the slow recycle time of the inversion mechanism makes this

approach impractial.

An approach using a twin set of ROMs is shown in Fig. 33. One

group of ROMs is read and used to provide the input to the other group,

and vice versa. The light passing through the hologram on the top left

produces input images for all the ROMs on the light-sensitive side of

the light valve. A polarized read light reflected from the light valve

and analyzed by another polarizer produces a contrast inverted image of

the entire surface. The~e point sources, reflected by a mirror, are used

to address the hologram on the bottom row. This produces the input

images for all the ROMs on the bottom light valve. Another read light is

used to generate the inverse of this image, which produces the address

images for the hologram on the top row.

The two ROMs with their light valves are organized in a two cycle

approach. One light valve is used to write the other, and then vice

versa. The delay or latency of the light valve is used as temporary

storage. This keeps the system going, much like how a flywheel is used

in a two cycle engine. (This configuration is referred to as a "torus

turtle".) A three cycle or Wankel approach using 3 ROM banks cmin be

- 61 -

?A

Read Light
Hughes
LCLV Polarizer

~ Hologram
MirrrMirror

MiLIrrrroMir - -p Mir

Mirror 'IDLYMirror

FIG. 32: OPTICAL TURTLE USING DELAY

Hughes Read Light
Holo LCLV

Mirror-4

-Mirror

Read Light Hughes Holo

LCLV

FIG. 33: OPTICAL TURTLE USING TWIN ROMS

- 62 -

considered if' the latency is not sufficient. This approach can be

extended to n cycles, as might be necessary to accommodate the long

recovery time of the inverting mechanism in some technologies.

The optical processor as shown in Fig. 33 can be simplified by

using reflective holograms to replace the mirrors as shown in Fig. 34.

These reflective holograms can be constructed to be oriented at an arbi-

trary angle. This would lead to a further simplification as shown in

Fig. 35. This sandwich structure would be simpler, more stable, and

more compact.

In all the optical turtle processor configurations the input data

is represented by an image that is projected on a portion of the 0T~ing

surface of a light valve. The output is represented by the image that is

reflected from a portion of the ANDing surface of the light valve. LED's

and optical masks can be used to translate conventional input data into

images of the form shown in Fig.- 30 (a) . The output images of the form

shown in Fig. 30(c) can be translated by photodetectors into conven-

tional electronic output.

The question remains as to how many 1R0Ms are possible. This depends

on the storage capacity of the hologram. The situation is similar to

that of holographic optical memories. The required spatial bandwidth of

each ROM is minimized by the use of point source addresses. For a ROM

representing a modulus of 32 a field of 32 by 32 possible point source

address would be needed. Each of the point sources must be asociated

with an image of 32 by 32 elements.

(5) Onis

-63-

Hughes Read Light
LCLV

Holo - K
Holo

Read Light Hughes

LCLV

FIG. 34: OPTICAL TURTLE USING REFLECTIVE

HOLOGRAMS

HUGHES Read Light

Polarizer -- LV

Holo

Holo

Read Light

FIG. 35: SANDWICH VERSION OF OPTICAL

TURTLE

- 64 -

The optical version has some unique advantages. The functions of

addressing, storage, and distribution of information are all done in

bulk. Making 100 optical ROMs should not be much more complex than mak-

ing 10 ROMs. This approach could potientially benefit from economies of

scale. Another advantage is that such a processor might be easier to

mass manufacture, since reproduction of the holograms would be a photo-

graphic process rather than one of assembly, as electronic versions

would be. A final point is that the use of optics considerably simpli-

fies the communication problem. Optical signals can pass through each

other without interference. They do not have to be shepherded around

with wires as in the electronic version. Conventional wiring contributes

an appreciable amount to the complexity and volume of current proces-

sors. A complete optical processor offers the hope of a more compact and

easier-to-fabricate processor.

The optical version does have a serious disadvantage. The

throughput rate of such a unit is basically the recriprocal of the cycle

time of the contrast inverting mechanism. Currently the most available

unit is the Hughes Liquid Crystral Light Valve (LCLV) which has a cycle

time of about a millisecond. To make such a processor viable in terms

of throughput, many points have to be processed in parallel to compen-

sate for the slow cycle time.

The relative merits of an optical and electronic approach are dep-

icted in Fig. 36. The increase of complexity of an electronic version

with increased throughput can be predicted quite accurately. Admitt-

tedly, an optical approach has a high initial overhead, but its increase

in complexity with increased throughput is unknown. The throughput at

- 65 -

optical

throughput

FIG. 36: COMPLEXITY VS. THROUGHPUT FOR ELECTRONIC
AND OPTICAL IMPLEMENTATIONS

-66-

which optics overhead would be completely amortized is another open

question. Electronic versions of the turtle processor will become more

and more significant because of their outstanding throughput, cost

effectiveness, and modularity. Larger and larger systems will be built.

The possibility of an optical approach will continually haunt this

growth.

- 67 -

/ /

III. RESEARCH ON RESIDUE ERROR DETECTION AND CORRECTION METHODS

A. Overview

The optics community is interested in research on the design of

optical systems capable of data computation. One approach of present

interest is based on the nature of arithmetic operations (addition ard

multiplication) in residue number systems [Ref. I]. Residue number sys-

tems have desireable properties. Most significantly of these, perhaps,

is that residue additions do not involve carry operations. The hope is

that the natural parallelism of optical systems can exploit the fact

that no carries are necessary.

Unfortunately, residue number systems also have very undesireable

properties. The worst of these is: a small error in an analog process

used to perform a residue addition may result in large error in the

result of the residue addition. The intrinsic nature of this error pro-

cess is discussed in the (3) On Noisy Residue Operations (Section B).

To date most research has focused on the design of physical sys-

tems that perform basic "residue operation" such as the mod operation or

addition mod some moduli. There has been little published material on

the development of a general mathematical system based on residue number

systems capable of incorporating error detecting/correcting operations.

The purpose of this paper is to make the following three contributions

towards the development of such a general mathematical system.

First, a general mathematical system capable of characterizing (i)

- 68 -

any mathematical operation performed in a residue number system and (ii)

all error detection/correction methods is constructed. This construc-

tion is undertaken in Sections B, C, and D and completed in Section E.

The main result is found in the subsection (3) The Error Checking System

(Section D).

Secondly, and importantly, a methodology for research into the

intrinsic capabilities of all possible error detecting/correcting

methods is proposed. This is done for the most part in Section E.

Finally, in Sections D, F, G are found examples of error

detecting/correcting methods. The special example indicated in the

abstract is in "Example: Special case of redundant encoding" (Section

F).

In addition to the three contributions above, this chapter

discusses in a heuristic way concepts of system complexity and cost.

This discussion begins in the subsection (4) Some Heuristics About An

Error Checking System (Section B) with a few brief comments.* The topic

of cost and complexity continues in the examples of error-checking

methods given in Sections D, F, and G. The importance of defining phy-

sically meaningful complexity measures is discussed in the subsection

(5) Statement Of Research Methodology (Section E) and in the Summary

(Section H).

The major topics developed in this paper are briefly summarized in

Section H.

W "Error-checking" is a-phrase used through out this paper to in-
dicate a particular kind of system. Error-checking systems are
those systems capable of any type of error detecting and/or
correcting, i.e., capable of any type of "check" for errors.

- 69 -

((

B. A FIRST STEP TOWARDS AN ERROR CHECKING SYSTEM

(1) The Basic Mapping T

We are interested in performing a given mathematical mapping

(operation). In this chapter the mapping to be performed will always be

denoted by:

T A the given mapping.

The domain and range of T is always a finite set of nonnegative integers

Domain T = Range T = I = [0,1,2 ,...,M-1)

where M-1 is the maximum element of 1. In the remainder of this section

(and paper) we will take the viewpoint that the mapping T accurately

describes the input/output relationship of some physical system designed

to realize the mapping T. The symbol T will serve double duty: (i) it

will stand for the mathematical mapping in a rigorous sense and (ii) it

will represent the physical system designed to perform the mapping T.

Which usage is intended will be clear from context.

(2) The Decomposition of T

In order to take advantage of the desireable properties of residue

number systems, the operation T maybe decomposed into the 3-stage pro-

cess:

x En r(x) .9T_ t(x) De T(x). (2.1)

The brief discussion of this process that follows is not intended to be

mathematically rigorous. Its purpose is only to give a quick overview

- 70 -

xix
x En OpT De T T(x)

FIG. 37: BLOCK DIAGRAM (SYSTEM) REPRESENTATION
FOR THE 3-STAGE PROCESS IN SECTION II.
(2.1).

x i En OpT De T (x)

OJ Something ?
(related to T)

V

Some convenient outpdt

FIG. 38: THE FIRST STEP TOWARDS DEVELOPING
AN ERROR CHECKING SYSTEI

- 71 -

of the process. Definitions and descriptions that need to be

strengthened and made rigorous are deferred to the remaining sections.

First, the operation En "encodes" the integer input x into a nxl

"residue vector" r(x). This residue vector r(x) is just an ordered col-

lection of elements whose form is x modm for i=1,2,...,n.*

Definition for r(x) J

The residue vector r(x) is the integer input x encoded by the

operation En:

x modm I

En x modm 2
x - r(x) (2.2)

,x mod nn

where the set of moduli mI = {i such that i=1,2,...,n} are pair-

wise relatively prime and the range M of the set 7T] is

n
M = "F'm.

After the input x has been encoded to the residue vector r(x), the

operation OpT performs an operation on the residue vector r(x)

equivalent to T's operation on x. The operation OpT is equivalent in

the sense that T(x) can be determinded from the intermediate output

t(x)=OpT(r(x)).

* A "residue vector" is any vector of the form used to define the
residue vector r(x). Note that because the elements of the moduli
setM are all relatively prime by definition, there is no "redun-
dant" information (with respect to mod operations) about the
scalar input x in the residue vector r(x).

- 72 -

Definition for t(x)

The operation OpT maps the residue vector r(x) to the residue

vector t(x):

T(x) modm 1

;T(x) modm 2

r(x) OpT t(x) : (2.3)

T(x) modm n; I fli

This mapping represents the mathematical operation to be performed,

i.e., addition, subtraction, etc.

In the third and final stage the operation De "decodes" the residue

vector t(x) to the value T(x).

It is significant to note that any mapping defined on an integer

set 10 {0,1,2,...,M-1) to the same set can be realized by this decom-

position. In essence, then, the first purpose of this paper is half

completed:* the 3-stage process described in (2.1) can characterize any

mathematical mapping (operation) performed in a residue number system

with range M.

But what about the errors? Why, how, and where do they arise?

What is there nature? The "why and how" is a topic not treated in this

chapter. The "where" and what to do about it is the primary topic of

interest.

(3) On Noisy Residue Operations

First, consider a "noisy" encoding process En:

- 73-

I j i

x En r(x) + e(x) r'(x) (2.4)

where e(x) is a nxl random vector. More will said about the nature of

e(x) in the following sections. Suffice it to say now that the form of

the noisy residue vector r'(x) remains suitable for input to the OpT

operation, i.e., r'(x) is itself a residue vector. In addition to a

noisy encoding process En, the OpT and De operations might be noisy.

More will be said about these cases in the following sections.

With the introduction of possible error in the encoding process we

come to a key issue: How will a nonzero error vector e(x) affect the

output of the 3-stage process described in (2.1)? Without going into

great detail at this point, it is possible to demonstrate that in gen-

eral the error in the output is "not well behaved." As an illustration

of what "not well behaved" means in a heuristic sense consider the fol-

lowing example.

Example.

The process below encodes with a noisy encoder En and then decodes

with a perfect decoder De:

x En r(x) + e(x) D x +De(e(x)). (2.5)

The decoding operation can be realized as

n
y 3 TFi.b- (y modmi+error in ith residue)] modM (2.6)

i=i 1' i

where the bi, i=I to n, are a set of integers and all mi are contained

in the set of moduli used to encode x.

Suppose the input x = y 0 in (2.5), then using the decoding for-

mula in (2.6) the the decoded noisy output is given by

74-

De(r'(x)) x + De(e(x)) 0 +De(e(x))

I 2-b..(O+error in the ith residue)] modM
i:i1 I

nM
: [- .b (error in the ith residue)M modM. (2.7)

i1

The result displayed in (2.7) demonstrates clearly that if just one of

the residue elements x modm. is in error by only 1 the decoded number is1

off by a multiple of the factor (M modm.) modM! Hence a small error inm. 11

the encoding process (the residue x modm. is off by 1) can lead to large1

error in the output (the result is off by some multiple of the factor

modm.) modM). Tn principle, errors in the operation OpT will exhi-
1

bit the same type of behavior as that discussed above.

In what ways may errors like those described in the above example

be detected? In what ways may such errors be corrected? Sections C, D,

and E, develop a mathematical system whose structure will allow meaning-

ful and definite answers to these questions.

(4) Some Heuristics About An Error Checking System

It is interesting to note that even before one undertakes the

developement of any particular system one can deduce some important

facts about the general nature of such a system. First, we expect the

"cost" of any system to be proportional to (i) the probability of error,

(ii) the nature of the possible error and (iii) the overall complexity

of the physical system. Secondly, any physically meaningful cost cri-

terion will certainly be based on some measure of system complexity.

This measure of complexity will, in general, take into account difficul-

ties in (i) realizing given types of mathematical operations in a

- 75-

(I /

physical system and (ii) interfacing the necessary operations. Finally,

at this point, it seems reasonable to expect there will be many dif-

ferent conceptual approaches to realize error-checking. These different

conceptual approaches will demand at least some differences in the phy-

sical systems designed to realize these approaches. Therefore, what we

mean by system complexity will probably have a significant impact on the

"costs" of different approaches.

- 76-

-I

C. Second Step Towards An Error Checking System

(1) The Basic Process

Shown in fig. 3.1 is a block diagram representation for the 3-stage

process

x En . r(x) OpT t(x) De T(x) (2.1)

discussed in Section P. The scalar input x is encoded to a residue vec-

tor r(x). The residue vector r(x) is then transformed by OpT to the

residue vector t(x). The vector t(x) is decoded by De to the output

T(x). The basic process in fig. 3.1 has no explicit "error-checking"

capability.* So, if any of the operations are error prone there is no

way to check errors. It is possible, however, to develop a system that

is derived from this basic system and is capable of error-checking.

(2) Introducing Error Checking Operations

As a first step towards developing this error-checking system, two

operations will be added to the basic process. The result is the

error-checking basic process in fig. 3.** Can it be this simple? Can we

expect to accomplish error-checking simply by adding on the operations

OpEn and "something?(related to T)."

The answer, clearly, is no. As given in the fig. 3.2 the new

operations "look" only at the noisy residue vector r(x)+e(x) and the

" The phrase " error-checking" is used through out the remainder
of the paper in place of the longer phrase "error
detecting/correcting."
0* The decoding operation De will be assumed to be error free
through out the remainder of the paper.

- 77-

noisy residue vector t(x)+e'(x).* The way the encoding process En was

defined in (3.2) does not allow for any redundancy in the residue (mod'

encoding. The only "information" OpEn has about x is the noisy residue

vector r(x)+e(x). Similiarly, the only information the operation

"something? (related to T)" has about T(x) is the noisy residue vector

t(x)+e'(x). In order for the operation OpEn to check errors in the

encoding of x to a residue vector, there must be some input to OpEn

other than just the noisy residue vector r(x)+e(x).**

(3) Introducing Pre-encoding

This leads us naturally to the concept of "pre-encoding." Pre-

encoding is discussed in the beginning of Section D and again in Section

E. In order for an error-checking operation OpEn to accomplish any

error-checking, the operation OpEn "needs" more information about x than

just the noisy residue vector r(x)+e(x). The purpose of a pre-encoding

operation is to generate different and independent information about x.

This new information is used as additional input to some modified

error-checking operation OpEn. The new information is assumed to be

error free.

The vector e'(x) is a random vector whose affect on t(x) is
analogous to the affect the random vector e(x) has on r(x) (dis-
cussed in Section B).
* In principle, the general description and structure of the
error-checking operation OpEn given in Section E is sufficient to
define a suitable error-checking operation OpT. In order to
economize on words and simplify the structure of the paper, atten-
tion is focus(l mainly on OpEn. This does not imply a lack of
generality.

- 78 -

D. Final Step Towards An Error Checking System

(1) The Basic System

The basic structure of the system illustrated in fig 4.1 is almost

the same as the structure of the simple system developed in Section B

and shown in fig. 3.1. In comparing the two systems, one can see that

the only real difference in the structure is the addition of the opera-

tion PreEn which pre-encodes the input x.

In place of the integer input x we now have a vector R:

x PreEnP X.

The vector R should be thought of as a kxl vector which "carries" infor-

mation about the number x. Tne dimension k and the specific form of the

individual elements in R is not discussed again until Section E (in (2)

Towards Defining R). The kind of information R may carry about x is

quite general: Whatever one might dream up and be able to encode. For

example, R maybe the input x repeated, some function of x, number

theoretic properties like evenness/oddness or primeness. Following the

pre-encoding step the vector R passes through the remaining stages in a

way anal.ogous to the integer input x passing through the stages of the

process shown in fig. 3.1.

(2) Description Of Basic System

First, R is encoded by the encoding process F n:

R -En :,(x)N

where NOx is some vector that takes the place of the residue vector

-79-

x m 'enEn OpT De T(x) and ?

FIG. 39: THE BASIC SYSTEM USED TO CONSTRUCT AN

ERROR CHECKING SYSTEN SHOWN IN FIG. 4.2.

7() (X)

x other operations ?

\ "V

Some convenient output

FIG. 40: THE ERROR CHECKING SYSTEM

- 80 -

r(x). In place of the original residue encoding process Fn is the

encoding process En that encodes in part by mod operations and in part

by a set operations that are necessary for error correction/detection.

The vector F(x) contains all the information about x available to the

system. It passes through the operation OpT:

?(x) .pT , t(x)

The vector t(x) contains all the information available to the system

about x and T(x). Finally t(x) is decoded by the decoder De to T(,):

Z(x) Te .. T (x)

It should be noted that the output of the decoder will in general really

be some vector whose elements contain T(x),x and any other information

in the pre-encoded R vector. This then is the nature of the basic sys-

tem. What will be added to this system for error detecting/correcting?

What purpose does the pre-encoder PreEn really serve? These questions

are handled next.

(3) The Error Checking System

In fig 4.2 is the error-checking system. One can see that the

basic system has been altered by eliminating any explicit mention of a

decoding stage, relabelling the OpT stage to T, and adding two new error

checking operations OpFn and OpT.* What are these error-checking opera-

tions OpEn and FpT? How do they relate to the still mysterious pre-

encoding operation PreEn?

* The decoding process De is not explictity shown for the sake of
pmplicity. The T operation is, in principle, identical with the
OpT operation in fig. 4.1. The label is changed only to facili-
tate other notation.

- 81 -

Discussion of OpEn and PreEn

The operation OpEn has as its input the vector (x). This vector

hopefully contains the correct encoding of the input vector x. The

operation OpEn is constructed so that any "inconsistencies" in the

encoded information about x in (x) can be detected by examination of

OpEn's output. Note that in general, the pre-encoding process PreEn

and the error-checking process OpEn are highly related. Any particular

choice for a pre-encoder certainly will be influenced by ideas about

what types of operations OpEn are (i) mathematically interesting, (ii)

conceptually powerful, (iii) physically realizeable and (iv) feasible

under some cost criterion. Perhaps it will be instructive to give two

straight-forward examples of error-checking operations. The nature of

PreEn and OpEn will be described in each case.

Example one

This example shows "odd shift" errors can easily be detected. What

are odd shift errors?

Definition for odd shift errors

Suppose a scalar input x is encoded by a noisy encoding pro-

cess to the residue vector r(x)+e(x) and then decoded to the scalar

x+De(e(x)). If De(e(x)) is an odd number then by definition r(x)

(or equivalently x) has undergone an "odd shift" error in encoding.

How can such errors be detected? If the set of moduli used to encode x

are all odd, such detection can be accomplished by generating the addi-

tional information x mod2.

- 82 -

As a special case consider encoding the . domain 10,1,2 81 by

using only one modulus = 9. The I domain, x mod9 and x mod2 are dep-

icted below in Table III.1.

x : 012345678 9 10...

x mod9 :0 1 2 3 5 6 7 8 1 9 10 .

x mod2 : 0101010 1 0 : 1 0 ...

Table 111.1

What happens if x mod9 undergoes an odd shift error? Without loss of

generality suppose x were 0. Then x should encode to 0 mod9 and 0 mod2.

Suppose however x rood9 encodes to one. We now have a residue vector

(x mod9 = 1:
:x mod2 0:"

But upon examination of Table 111.1 we see that this residue vector does

not correspond to any input value in the input domain 1. Therefore the

information about x in (x) is inconsistent.* The example used was

x mod9=1. By examining Table 111.1 one can see that the information in

the residue vector would be inconsistent if x were encoded to

x mod9=1,3,5, or 7. One can also convince oneself by using examples of

one's own that all oddshift errors for any xC I input can be detecte,'.

The pre-encoding process involved encoding x mod2. The error-

checking operation OpEn decides if the information in F(x) (in this case

(x) is still a residue vector) is consistent. This can be accomplished

by using a polynomial transformation with 2x9=18 degrees of freedom

* Notice that this N(x) does correspond to the integer 9 C-1. That
is, if we had encoded the ' domain {0,1,2,...,17) with the
moduli set 2 and 9 then the r(x) would not be inconsistent.

- 83-

(DOF).* The increase in system cost for this type of error-checking

should be expressible as something with the form:

Cost of error-checking + cost(x mod2 operation) + cost(OpEn with 18 DOF).

System cost is also decreased, however, due to the elimination of cer-

tain error types. The remaining cost due to errors has the form:

Cost after error-checking = cost(even shift errors).**

It is not necessary to restrict the residue encoding process to 1 A

modulus. Any set of relatively prime odd moduli used for encoding could

be checked for odd shift errors using a perfect x mod2 encoding. The

increase in system cost would be of the form:

Cost of error-checking = cost(x mod2 operation)

+ cost(OpEn with 2 M DOF).

Example two

This example demonstrates that all errors except "multiples of a

particular type of redundant modulus" can be detected easily. What form

do these redundant moduli take? Usually when one says two moduli ml and

m2 are redundant one means that ml and m2 have common divisors. The

type of redundant moduli used here are those for which one divides the

other, e.g., m1 =3 and m2=9.

As a special case consider the same ' domain as in example 1 and

m There are 2x9=18 possible inputs to OpEn.
, I am assuming the nature of the error process is such that er-
rors are more or less uniformly distributed over the input domain

- 84 -

encode x mod9 and x mod3. The I domain, x mod9 and x mod3 are depicted

in Table 111.2 below.

x : 0 12 3 4 5 67 8 1 9 10 . . .

x mod9 : 0 1 2 3 4 5 6 7 8 0 1 . ..

x mod3 : 0 1 2 0 1 2 0 1 2 0 1 . ..

Table 111.2.

Now what happens when x mod9 is incorrectly encoded? Without loss of

generality suppose x were 0. Then x should encode to 0 mod9 and 0 mod

3. If x mod9 encodes to 1,2,4,5,7, or 8 this will be inconsistent with

the value for x mod3=0. Therefore error can be detected in these cases.

Error can not be detected if x mod9=3 or 6.

As an aside, note that if the error process were such that the

encoded residue x mod9 could shift from the correct value by only 1,

then all errors could be detected and corrected using the additional

information about x contained in the residue x mod3. This special case

is discussed more fully and generalized in "Example: Special case of

redundant encoding" (Section F).

The pre-encoding process involved encoding x mod3. The error-

checking operation OpEn decides if the information in x mod9 and x mod3

is consistent. This can be accomplished by using a polynomial transfor-

mation with 3x9=27 DOF. The increase in system cost for this type of

error-checking takes the same form as that descibed in Example 1.

It is not necessary to restrict the residue encoding process to

only one modulus. Many sets of relatively prime moduli used for encod-

- 85 -

"- _ '- . . -" . -,*.- -.*

ing could be checked for errors using an error-checking set of moduli

with a smaller range. The technique requires only that the set with

the smaller range be relatively prime and that the smaller range, call

it S, divide the range of the set used for the encoding. The range of

the encoding set was defined in Section B as M. Hence, S must divide

M.* All errors in the 1 domain = [0,1,2 M-1) can be detected except

those of the form:

x + k.S, k=1,2,3

The increase in system cost should be of the form:

Cost of error-checking cost(encode x with error-checking moduli set)

+ cost(OpEn operation with S M DOF).**

Discussion of "pT

The error-checking operation OpT is constructed, in principle, the

same way the operation OpEn is constructed. We know what operation T on

x we want to perform. The nature of T and the design of the pre-encoder

and OpEn "designs for us" the necessay T operation. Based on the vector

output t(x), the error-checking operation OpT checks for any incon-

sistencies in the transformed information about x in (x).

General Discussion

Note that in general, one would probably not construct any of the

operations, PreEn,-n, T, OpEn, or OpT without giving careful considera-

* The range S is the product of all the moduli in the error-
checking set of moduli used to check the encoding.
** It turns out that the error correcting method discussed in "Ex-
ample: Special case of redundant encoding" (Section F) has a sig-
nificantly smaller cost than that suggested by this formula.

- 86 -

tion to the ways all the operations may interrelate. If some criterion

for goodness of physical design takes into consideration range, speed,

complexity, reliability, etc., we certainly expect these operations to

be highly related.

For the sake of completeness a very brief discussion on how an

overall system is controlled by outputs from error-checking operations

is given next. Such a complete error-checking system is shown in fig.

4.3.

(4) Complete Error Checking System

In the error correcting system shown in fig 4.2 no provision was

made either for the interpretation of the output from the error correct-

ing operations, O'pEn and OpT, or for overall system control governed by

such interpretation. For the sake of completeness the system in fig.

4.3 makes such provision by the addition of the System Self Checking

Control Units.

The conceptual framework for a complete system has been developed.

What do we do now? There are three related steps to take. First,

develop as powerful and as orderly a method for investigating how the

operations in the set (PreEn,En, OpEn, OpT, T1 are related. Second,

develop physically meaningful measures of system complexity, reliability

and feasibility. Finally, use the knowledge and understanding gained in

the first two steps to design actual physical systems. Section F under-

takes the first step. Note is also taken of the importance of develop-

ing physically meaningful measures of complexity.

- 87 -

Cl.

ca

Vn N -

E-4 4--

ta2:

En,

IE :-,

0

U 14

CC

bo 0

-4-

u-. 0. ~

-88--*

E. RESEARCH METHODOLOGY

(1) General Discussion

A system concept general enough to treat most computational prob-

lems of interest as special cases is developed in Section D. A block

diagram representation of this system is shown in Fig. 4.2. The purpose

of this section is primarily to develope a methodology for research on

error-checking methods. The system concept defined in Section D is only

the first step towards this goal. We still need to impose additional

mathematical structure on the system before a more rigorous mathematical

analysis may begin. This mathematical structure will be imposed

(implied) by the definitions for the various elements R, (x), and Z(x)

as well as the operations PreEn, E'n, -OpEn, T, and ZpT. There are, of

course, an infinity of mathematical structures from which to choose.*

What attributes should the definitions have? Primarily we require

the definitions to meet a "letIs-make-progress" criterion. Secondly,

the generality of the system must be maintained.* Tnirdly, both the

definitions themselves and the structure imposed on the system by the

definitions must be clear enough so that the heuristic may serve as a

powerful aide and guide to further mathematical analysis.

Fortunately, all three of these criteria can be met. Tnere is a

way of viewing the noisy residue encoding process

x _Fn ,pr(x) + e(x) (5.1)

' The author has considered a significant number there of!
* That is, we want to be able to realize any mapping from A to

-89-

that implies a natural requirement on the vector i'. Once 5 is suitably

defined, definitions for all the remaining elements and operations fol-

low.

(2) Towards Defining R

Think of the scalar input x in (5.1) as representing the set of all

possible incorrect outcomes of the noisy encoding process. This point

of view establishes a correspondence between x and a set of residue vec-

tors:

x {r(x) + e(x) for all e(x) of possible interest L. (5.2)

Now every r(x) + e(x) will decode to some number

r(x) + e(x) De > x +De(e(x)) = x + (x)

where (x) = De(e(x)). So, we might just as well establish the

correspondence between x and the set of decoded residue vectors:

x . &(x) : x + Z(x) for all (x)}.** (5.3)

For the purposes of notational simplicity the latter correspondence is

used in the discussion that follows.

As a next step the set Vx) in (4.3) is partitioned into the dis-

tinct sets

&(x) { x }U { x + (x) for all (x)iO}. (5.4)

J' general, one presumedly would like a system to be error
free. There may be special cases, however, where certain error
types are considered far more costly or "disasterous" than others.
In these cases the primary concern may be to eliminate only these
particular error types.

From here on the phrase " of possible interest" as a qualifier
on the set will not be used explicitly. Unless stated otherwise,
however, this qualifier is implied.

- 90 -

--- ' i III I ii i i , , ,= At

Define the set T(x) by

Y(x) 1 x + (x) for all (x);01.

The set 7(x), then, is the set containing all the possible outcomes of

the noisy encoding process, given x is the input.

The input domain = 0,1,2,...,,M-1 } can be partitioned then into

the 2 distinct sets

A = P(x) UP (x) e . *

So we have a partition of .1? What purpose does it serve? We are look-

ing for a suitably well defined definition for the vector 7. If Z is to

"supply" enough information about the true input such that all errors

can be detected, then certainly it must supply enough information to

tell us unambiguously if the output x + (x) is an element of 9(x) or

T(x) e .

This error-checking may be accomplished if 7 itself induces a par-

tition on ., the same partition on 'I induced by x. That is, x must con-

tain at least enough information to induce the partition 9(x)) P(x)c.

The error-checking can then be done by asking

is x + W(x)c 7(x) or not?

Definition for R

The vector R is the output of the PreEn pre-encoding process.

It contains all the information about the scalar input x available

to the system. It is a kxl vector partitioned into the two subvec-

* T(x)0 means the compliment of 9(x).

- 91 -

.1

tors v(x) and a(x):

x > v(x), a(x))

where v(x) is a ix1 vector and a(x) is a ix1 vector and k=i+j. The

scalar input x is represented by the vector v(x); and the addi-

tional information about x is pre-encoded by the PreEn process to

the vector a(x). The pre-encoding of

x - vx)

is one-to-one and onto. The us(. of such coding allows for a gen-

eral representation for the input x. Examples of such a general

representation are:

(i) x =X+ X 2 +X3 +...+X - - v(x) x1,x2 9xv3 xn) and

(2) x = x 1 x 2 x 3 .. x n V W vlx) 2 9 (X X , 3 " X. . x n

(3) Towards Defining PreEn, En, F(, 0pn,, t(x), dpT

All of the operations PreFn, OpEn, T and OpT satisfy the following:

(i) the mappings nave vector inputs (range) and vector outputs

(domain),

(ii) the elements of any vector are nonnegative integers,

(iii)the number -" possible vector inputs and outputs is finite, and

(iv) all of the mappings can be realized by polynomial transformations.

Definition for PreEn

The pre-encoding process has been implicitly defined by the

- 92 -

- -- -

definitions given for the scalar input x and the pre-encoded output

vector 2.

Definition for F(x) and En(x).

The vector O(x) is the ouput of the encoder En:

R En , NO.

The vector F(x) is a nxl vector. In a specific case ?(x) might

satisfy the equality:

?(x) = En(x) = n(v(x), a(x)) En1(v(x)), En2(a(x))

where the mappings En1 and En2 are independent operations acting

independently on the vectors v(x) and a(x) as inputs; En (.) is a

lx1 vector and En2 (.) is a mxl vector where l+m=n. In general,

however, the vector (x) will satisfy only the equality:

iNx) = En(x).

Definition for dpEn

The error-checking operation OpEn has as its input the nxl

vector (x) and a binary scalar output. The output is given by

'pFn((x)) 0 if encoding inconsistent
1 if encoding consistent

Definition for 7 and t(x)

The operation T has as its input the nxl vector F(x) and a qx1

output vector t(X):

- 93-

I

:T (x)

(T2(x):: t(x)

where TI (.) is oxi vector, T2 (.) is pxl vector and o+p~k. The

subvector T (x) is the residue vector for the scalar T(x) The

subvector T2 (x) contains the additional information about x pre-

encoded by PreEn.

Definition for OpT

The error-checking operation OpT has as its input the kx1 vec-

tor T(x) and a scalar binary output. The output is given by

OpT(?(x)) 0 0, if the mapping" T is inconsitent
1, if the mapping T is consistent.

04) Towards Statement Of Research Methodology

The proposed research methodology is based primarily on the parti-

tioning concept introduced in the subsection Towards Defining R. Any

error detecting/correcting method, no matter how derived, implicitly

induces a partition on the scalar input range Therefore, obtaining a

clear and thorough understanding of how partitions of the finite range

can be generated from (i) a collection of numbers (the elements of a(x))

and (ii) a set of operations on these numbers, is a worthwhile goal.

If we had this understanding, the following questions could be

more easily answered.

(i) Given a set of operations and a finite set of elements what classes

of partitions can be parameterized by the set of elements?

- 94 -

AD-AIO7 568 STANFORD UNIV CA STANFORD ELECTRONICS LABS FS 9/2
SYSTEM CONSIDERATIONS IN THE DESIGN OF RESIDUE PROCESSORS.(U)
MAR 79 A HUANG, J MANDEVILLE, J E GOODMAN AFOSR-77-3219

UNCLASSIFIED SU-SEL-79-OO8 AFOSR-TR-81-074 ML
22ffIIIIIIIIIIfI

EEiEEEIIIIEElEEK':

(ii) For a given class of partitions that can be parameterized what tra-

deoffs exist between the number of elements used and the type,

number and order of operations used to generate the partitions.

(iii)Is there a minimum cost approach under some cost criterion where

the number of elements and the type, number, and order of opera-

tions used to generate a partition are the variables affecting

cost.

(5) Statement Of Research Methodology

Our research efforts should be directed towards:

(i) acquiring a more thorough mathematical background on the nature of

partitions and how to generate them,

(ii) continuing to generate partitions by ad hoc methods (see the next

subsection entitled Some Adhoc Partitioning Methods),

(iii)developing a variety of physically meaningful cost criteria (com-

plexity measures) likely to suit most applications, and

(iv) investigating the relationship between the choice of a complexity

measure and the resultant cost of a given partition method (a sen-

sitivity analysis).

(6) Some Adhoc Partitioning Methods

i) Number theoretic properties like evenness/oddness and the nature of

the input number's prime factorization may be useful.

- 95 -

(ii) Partitions induced by encoding the input x mod some set of small

moduli not subject to error may prove to be the best way. The par-

tition of induced by this method given the input x is illus-

trated below:

0 M-1 '

. . . x-2.S x-S x x+S x+2S . . .

where S = the product of the small error free moduli.

The partition induced on by the moding operations is

{x} L) { (x+k S) modM, k = nonzero integers }

(iii)Partitions may be induced by passing lower and upper bounds for the

input x, i.e., xE(x-a,x+b).

(iv) Combine the above two methods.

(v) Partitions could be generated by carrying out operations on the

residue vector. For example, a set of values { (?(x), Oi(?(x))

i=1 ? }, where (.,.) is an inner product and 0i C.) is an opera-

tion defined on (x), could be computed.

96-

F. ERROR CHECKING BASED ON ADDITIONAL ERROR FREE RESIDUE ENCODING

(1) General Discussion

We are looking for ways to check errors in residue encoding. It is

a natural question to ask "Can we use residue encoding to check residue

encoding?" The answer, in general, is yes. Simple examples of this

kind of error-checking are given in Section D. All the examples in this

section are also of this type. There is a basic form to this type of

error-checking. The following discussion describes this form. The

pre-encoding operation PreEn generates a residue vector px):

x mods

1x mods 2

x mods n I
where A= Is i i=1,2,...,n} is a set of error free moduli (generally

small), all s. are relatively prime, and the range of A is S. The1

encoding operation En generates a residue vector ?(x):

ix modm
ix modm 2 1

F(x):

1x modm

i nj

whert =M f i=1,2,...,n} is a set of noisy moduli (generally large),

all m i are relatively prime, and the range oflnis M. The pre-encoded

residue vector D(x) then is used to check for errors in the residue vec-

tor P(x).

For special kinds of error processes, the error-checking operations

- 97 -

based on this method might prove to be cost effective. The method dis-

cussed below in "Example: Special case of redundant encoding" is a good

example of such a special case. It should be pointed out, however, that

in order to detect (or correct) all possible errors for any error pro-

cess, the range of the small moduli A set, S, must be at least as large

as the range of the encoding set 71, M. If S=M, clearly one would encode

the input x with the error free moduli set A and not use the error prone

set 71n at all!

It is convenient to separate the method of using additional error

free moduli into two distinct types: Ci) the range S divides M and (ii)

the range S does not divide M. These two~distinct types are discussed

in the two following subsections. The I'S divides M"1 type is handled

first.

(2) Discussion of "'S divides M1" Error Checking

Example 2 (Section D) gives an overall description of the nature,

behavior, and cost of such error-checking systems. As indicsted in

Example two, the error-checking method is capable of detecting all

errors except those of the form:

x + k.S, k =1,2,..

The method can not in general correct all detectable errors. However,

if the nature of the error process is of a certain type, it is possible,

in principle, to detect and correct all errors. Example two takes note

of this possibility for noisy mod9 encoding when the error can shift the

correct residue value by at most 1. This special case uses only one

modulus. This can be generalized to encoding with n noisy moduli and

-98-

error-checking with n error free moduli. The following example does

Just that.

Example: Special case of redundant encoding

There are three basic requirements that a given noisy residue

encoding process must satisfy for this special case of error correcting

to work. One requirement restricts the class of error processes possi-

ble. The other two requirements restrict the choice of moduli used.

The requirements are:

(i) the error process for each modm i encoding must satisfy the follow-

ing:

Inoisy x modm i encoding - true x modm i value I I error I <

maximum residue shift from error = maxrs <

the modulus m i for all possible error,

(ii) there must exist an error free modulus si for each m i that satis-

fies:

s.> 2,maxrs+l,

(iii) and the error free modulus si must divide each m i , the modulus

that si checks.

Example 2 (Section D) gives an example satisfying the above

requirements. The maximum residue shift from error is 1. The modulus

m I = 9. The error checking modulus is s; 3 (which obviously divides

9). The cost of correcting errors is:

-99-

Cost of correcting errors cost(x mod3 encoding)

+ cost(OpEn operation with 3x9 27 DOF).

A generalization of this error correction procedure is straight

forward. For every m CM= [m i such that i=1,2,....n} = "noisy encoding

set" there must be a corresponding s i =s. i=1,2,...,n} = "error-

checking encoding set" such that the three above requirements are met.

The error-checking operation OpEn used to correct the noisy residue

values x modmi can be decomposed into n independent operations. There
1

exists a one-to-one ocrrespondence between the "ith residue pair"

&afined by

ith residue pair A (xmodm i + error, xmods)

and the "ith independent error-checking operation."

This decomposition can be done because each modulus m. (or s.) supplies

information about the input value x independent of all the otner moduli

in the set M(or A). The moduli pairs (mi,s i) are redundant however,

and therefore x moods. supplies information about x that is not indepen-
1

dent of the information supplied by the x modm i value.

The ith independent error correction operation in OpEn requires

s..m. DOF.1 1

Therefore the cost of the ith operation is:

Cost of correction x modmi error = cost(x mods i encoding)

+ cost(operation with s i m i DOF).

The total cost of error correcting then is:

- 100 -

Cost of error correcting r(x) = cost(encode x with A)

n
+ 2 cost(operation with s..m. DOF).

The following example illustrates the essentials of this method.

Example

Suppose encoding is done with the set 71 = 121,169). If the max-

imum residue shift from error is 5, then the set A = (11,131 could be

used to check for all errors in residue encoding with modulus set

The set A could also be used to check for all errors in a general T

operation if the maximum residue shift remains 5. The cost of error

correcting is:

Cost of error correcting = cost(encode x with A)

+ cost(operation with 11x121 DOF)

+ cost(operation with 13x169 DOF).

The nature of error processes intrinsic to analog encoding of residues

often satisfy the requirements above. Therefore this special case of

error correcting should prove to be useful in situations where analog

processes are used to do mod encoding and residue arithmetic in general.

(3) Discussion Of "S does not divide M" Error Checking

Example one (Section D) is a special case of this type of error-

checking. In the example, x mod2 encoding is used to detect all odd

shift errors. One might hope that detecting even shift errors is just

as simple. Unfortunately, it is not. If some small odd modulus I is

used to check for even shift errors, it can not detect even shift errors

- 101 -

, < (

of the form:

+ k*2"7, k=1,2

where x is the input scalar and - is some small odd modulus assumed to

be error free.

As an example, consider Table 111.2 in Example two (Section D).

Suppose the input were 0. If the small odd modulus were 3, the value x

mod3 could not detect the error

x mod9 + error =0 + 6 z 0 + 2x3

At best, error-checking methods based on an error free set of moduli

A (2, and other relatively prime odd moduli) can detect all errors

except those of the form

x + k.S, k=1,2,3.... (6.1)

where S is the range of A. In general these methods can not correct all

detectable errors.

The cost of error-checking is:

Cost of error-checking = cost(encode with A moduli set)

+ cost(pEn operation with S-M DOF). (6.2)

(4) Final Discussion

Special structure in the error process intrinsic to the mod encod-

ing (or residue arithmetic operation) can lead to error-checking methods

capable of detecting and even correcting all errors. The method

described in "Example: Special case of redundant encoding" is a non-

trivial example. In general, however, error-checking based on

- 102 -

generating additional information about x by performing extra error-free

mod encoding can not do any better than that indicated in the results

(6.1) and (6.2) (in the previous subsection).

- 103 -

G. SOME MORE ERROR CHECKING METHODS

(1) General Discussion

The discussion of the three main topics in this section is for the

most part heuristic. First, methods of error-checking other than the

use of additional error free moduli are discussed. Second, methods

using the pre-encoding:

x V(vx)

as defined in the "Definition for " (Section E) are briefly covered.

Lastly, a way to perform the residue arithmetic operations

x modm - - T(x) modmi, i:1,2,...,n (7.1)

using a set of small moduli whose range is > mi for all i:1,2,...,n is

discussed.

(2) Error-Checking Without Additional Error-Free Residue Encoding

The partitioning methods given in (i), (iii), (iv), and (v) in (6)

Some Adhoc Partitioning Methods (Section E) are examples of such

methods. Is it possible that these methods can do a substantially

better job of error-checking than methods using additional error tree

residue encoding for the same cost? This appears doubtful. The follow-

ing discussion indicates why this is so.

A given error-checking operation for some residue arithmetic opera-

tion T,

r(x) T t(x)

-104 -

must generate numbers other than residue values from the input (x),

r(x), and the output t(x). The numbers are then compared. If there are

M possible inputs (and outputs) and the number of possible errors for

any given input is N then any error-checking operation has, in general,

M'N DOF.

However, there appear to be two reasons why such methods may prove

cost effective in some situations:

(i) error-checking operations which generate partitions different from

those that can be easily generated with residue encoding may be

necessary and

(ii) ordinary scalar arithmetic operations on residue w modm i values may

prove to be easier (less costly) to perform than residue encoding.

(3) Alternate x Input Representations

In "Definition for 2" (Section E) mention is made of pre-encoding

the scalar input x to some alternate representation:

x > (x1 ,x2 ,x3 ,x n)where x = xI x2 x 3 . .xn .

Why do this at all? Suppose the input domain ! f{,1,2....M-11.

Then it might be possible to use a set of x. such that each x. satisfies

xi 1

If each element of v(x) is residue encoded separately, then the range of

the residue encoding process is reduced to only 1M.

This reduction in the range necessary to encode x is significant

- 105-

and certainly would help make systems designed to perform arithmetic

operations based on a residue number system less susceptible to encoding

error. Unfortunately, using the v(x) representation for x does destroy

the nice structure for arithmetic operations inherent in a residue

number system with the full range M. Hence, the cost of "doing busi-

ness" , i.e., the cost of performing an actual arithmetic operation T

will substantially increase.

(4) Small Residues To Do Large Residue Arithmetic Operations

For some residue arithmetic operation T each residue x modm. is
1

mapped to:

x modm. > T(x) modmi, =1:,2n. (7.1)

But what is the mapping in (7.1)? It is a mapping from the finite set

{O,1,21....-1} for all i=1,2,...,n to itself. Therefore residue

arithmetic could be used to accomplish it!

Suppose we have a moduli set [q i : i:1,2,...,k} where the range

of Q is Q and Q> m. for all i=1,2,...,n. Then this one set of small

moduli could used to compute all the mappings in (7.1)!

The cost of doing each residue arithmetic operation directly in

(7.1) is:

Cost of ith residue operation = cost(operation with m. DOF)

+ cost(error with m.).

The cost of doing each residue operation with the set Q is:

Cost of ith residue operation =[cost(encode x modmi with C)
1

~- 106 -

k

+ cost(operation with q DOF)
i: 1

+ cost(error with 0)

+ [cost(Decode to T(x) modm.)].I

The cost of encoding and decoding with 0 are in brackets because it is

possible to design a system that performs many different T mappings such

that the encoding with Q is done only once before all the T mappings and

the decoding is done only once after all the T operations.

If it is intrinsically easier to generate x modm i residue encoding

for large m i than it is to generate the arbitrary T mappings in (7.1),

this method may prove particularly cost effective.

I

II

- 107 -

((

H. SUMMARY

A general system concept able to incorporate all residue arithmetic

operations and error correcting/detecting methods as special cases is

developed. The block diagram representation in Fig. 4.3 depicts this

system.

A methodology for research into the intrinsic capabilities of error

correcting/detecting methods is proposed. The motivation, main develop-

ment, and statement of this methodology is given in Section E.

Several simple examples of error correcting/detecting methods are

given. In particular, the method explained in "Example: Special case of

redundant coding" might prove to be cost effective when analog processes

involving thresholding are used to perform residue arithmetic opera-

tions.

The topic of system complexity and resultant cost is an important

one. The need to develop physically meaningful measures of system com-

plexity is noted in (5) Statement of Research Methodology (Section E).

The costs of various error-checking methods are discussed in the exam-

ples given. Upon comparing the form of the costs as given, it is clear

that more quantitative statements need to be made in order to chose with

confidence between some of the different methods.

- 108 -

Ak'P Ei) tX

ADDRESS CONT ADDRESS CONT ADDRESS CONT

000000 XOOO 010101 XXXX 101010 xxxx
000001 XOol Olollo xxxx 101011 xxxx
Oujolu XU1O 010111 XXXX 101100 xxxx
o0o0uj1 Xul1 o110u.i X611 101101 XXX
0001(30 X100 ulluol Xbu lulillot XXXX
o00101 XXXX ullohi X000 1u1111 XXXX
000110 XXXX 011011 X~o1 11uoo0 XXXX
000111 XXXX 011100 XO1o ldooui XXXX
ooluoo X001 011101 XXXX 110010 XXXK
001001 XulO 011110 Xxxx 110011 XXXX
001010 X011 011111 XXXX 110100 XXXX
001011 X100 l00U00O X100 116101 XXXX
001100 X00O 100001 XOOO 110110 XXXX
0011G1 XXXX 100010 X~OO 110111 XXXX
001110 XXXK 100011 XOIo 111000 XXXX
001111 xxxx 100100 X011 111001 XXXX
010000 Xuo1 100101 xxxx 111010 XXXX
010001 X011 100110 XXXX 111l1 XXXX
010010 X100 100111 XXXX 111100 XXXX
010011 X0QO 101000 XXXX 111101 XXXX
010100 X~o1 101001 XXXX 11111,0 xxxx

111111 xxxK

TABLE TI

-109 -

ADDRESS CONT ADDRE'SS CONT ADD(;S CONIT

OOiJOOU XOOO 010101 X~oO hluloa XOL0O
0%.u00al XuiMI 013lho xuoO 101011 X~oO
000010 Xuo1 013111 XXXX 1011u0 XOio
000011 XO11 u11000 XUll 101101 XUL1
OOjiuO X100 011001 X1iJ0 101110 X100
ooiuu X1o1 011010 X1O1 101111 XXXX
o011 Xiloi 011011 Xlo11O 1000 Xili

000111 XXXX 011100 xuuo 110001 XuOOI
001000 XOOI 011101 XOU1 110&io XuoO
001001 XOlu) 011110 XOlo iluoll XO1o

JolIulo xal1 011111 xxxx 110100 XO11
OOhuul X100 100000 X100 110101 X100
01,1100 X1o1 100001 X1o1 110110 Xil
001101 X11in 100010 X11o 110111 XXXX
001110 XOOO 100011 X0OO 111000 XXXX

001111 XXXX 100100 X~o1 111001 XXXX

010000 XO1O 100101 XO1o 111010 XXXX

010001 X011 100110 X011 111011 XXXX

010010 X100 100111 XXXX 111100 XXXX

010011 X1o1 101000 x101 lilhul xxxx

010100 X11O 101001 X11O 111110 XXXX
- 111111 XXXX

TABLE T2

ADDRESS CONT ADDR.ESS COINT ADDRE~SS COtNT

000000 XO00 010101 Xili 101010 xil

uU000. KuOl 010110 X000 101011 X~OO'

60001 Xuhu G10111 XOul 101100 xi)01

OUU0ll XO11 011000 Xuli 101101 XuloI

000100 x100 011001 Xlou 101110 x011.

000101 X1o1 011010 Xlul luilli xluO

u00110 X1o ulloll Xllu 110000 X110

000111 Xili 01110i Xili 110001 xil)

uolOuu XUUI 011101 X00u 110010 X000

uoloul X010 011110 XOJ1 110011 x0o1

001010 X011 011111 Xo10 hobOu xdlo

001011 XluO 100000 X100 110101 X011

001100 x101 100001 X1o1 110110 X100

U01101 x110 100010 XLo 110111 X1o1

uollOu xlii 100011 Xili 111000 xlii

001111 XOOIJ 100100 XOUo 111001 X~oui

010000 x010 100101 X001 111010 X~ol

010001 x011 100110 xoio 131011 xo10

010010 X100 100111 X011 111100 X0ll

010011 x101 101000 X1o1 111101 XX00

uloQoo x110 101001 x110 111110 X101
111111 X11o

TABLE T3 -110-

ADDRESS C C, ADDRlESS C0O4T ih.LDRESS CONT

000000 X000 010101 XXXX 101011) x~xx
000001 XOOl 010110o xxxx 101011 xxxx
0oulo X010 010111 xxxx 101100 XXXX
000011 X011 011600 XXXX 101101 XXXX
aooioo x100 011001 xxxx 101110 XXXX
000101 XiqJ1 011010 xxxx 101111 xxxx
000110 X1IO 011011 XXXX 110000 XXXx
006111 Xili 011100 XXXX 110001 XXXX
O10Oh, XXXX 011101 XXXX 110010 XXXK
001001 XXXX 011110 xxxx 110011 xxxx
0olu XXXX U11111 xxxx 110100 xxxx

001011 XXXX 100000 XXXX 110101 xx
OOllOu XXXX 100001 XXXX 110110 XXXX
001101 XXXX 100010 XXXX 110111 xxxx
001110 XXXX 100011 XXXX 111000 XXXX
001111 XXXX 100100 xxxx 111001 xxxx
010000 XXXX 100101 xxxx 111010 xxxx
010001 XXXX 100110 xxxx 111011 XXXX
010010 XXXX 100111 xxxx 111100 XXXX
010011 XXXX 101000 XXXx 111101 xXX
010100 XXXX 101001 XXXX 111110 xxxx

111111 XXXK

TABLE T4

ADDRESS CONT ADDRESS CONT ADORFJSS CONT

06000u XOOU 010101 X~oI 101010 X011
uuoual X01l 010110 XOLu 101011 X100
000010 XO1O 01l111 Xiull 101100 X000'
U00011 x011 o11o00 X100 101101 Xia1
000100 X106 011001 X0O0 101110 XOIO
f)001U I Xou 011010 XOulJ 101111 XI11
000110 X~o1 011011 XO1O 110000 X100
000111 XOld 011100 X011 llUOoI X000
ouluou X01I 011101 X100 110010 X~OOI
001001 l~ xiu Ull1l0 X000 110011 X010
U01010 xou 011111' X~o1 110100 XO11
001011 Xuul 100000 X0I1 110101 X100
001100 XO1O 1Ou001 X100 110110 XOOO
001101 X011 100010 X0OO 110111 X~oI
001110 X100 100011 X001 111000 XO1O
001111 X000i 100100 XO1O 111001 X011
OlOO~O xuOl 100101 X0I1 111010 X100
010001 xolo ioollo X100 111011 X000
010010 XOL1 100111 XUOO 111100 X~OO
010011 X100 101000 XUOI 111101 Xolo
010100 jooG 101001 XOIO 111110 X011

111111 Xi00

TABLE T5

ADDRESS CONT, ADDR~ESS COA~T ADr"RESS COWi'

000000 XOUO 010101 x~oO iolto x11o
LJ0OOOl X~Ol olcllO x~otJ 101011 X~tJO
ouolo Xuo1 010111 X010 101100 XOOI
000011 X011 011000 XO1I 101101 Xloi
000100 X100 011001 Xi0U 101110 X01
000101 X1o1 011010 Xl0i 101111 X100
u00110 xlO 011011 X11U 110000 XJOI
000111 X00O 011100 X60O 110001 X11O
001000 X~o1 011101 X00i 110010 X000
001001 xo10 011110 Xcilo 110011 X~OO
001010 Xa11 011111 X0I1 110100 Xlo1
001011 X100 100000 X011 110101 X011
001100 X1o1 100001 X100 lill X100
001101 X11o 100010 X1O1 110111 X1O1
001110 X~odi 10u11l X11O 111000 x110
001111 Xuol 100100 X0O6 111001 X0JOO
010000 XO1O 100101 X~oO 111010 x~oI
010001 X011 100110 XOLO 111011 XU1O
010010 X100 100111 X(J11 111100 X011
010011 X1o1 101000 X100 111101 X100
010100 X11o 101001 Kiol 111110 X1oI.

111111 X11o

TABLE T6

ADDRESS CONT ADDRESS CONT ADDRESS CONT

UoOOOQ x000 010101 X1o1 10101 XOI10
uOOuul x0o1 01311u X11O 101011 XO11
000010 X010 010111 Xili 101100 X100
000011 x011 011000 X~OO 101101 X1o1
000100 X100 011001 X001 101110 X110
000101 X101 011010 XO1u 101111 xili
000110 X11o 011011 XuJ11 110000 X000
000111 Xili 011160 X100 11OU01 XOO1
00100 x0ou 011131 X1o1 110013 XO1O
001001 X~oO 011110 X11u 110011 X011
o01u10 x010 011111 Xili 110130 X100
001011 X011 loouOO X~oO 110101 X1o1
001100 XiG0 100cj31 xoo1 liollo XI1o
001101 X10i 1OU010 X010 11ul11 Xili
001110 X11o 100011 X0I1 111000 X~ou
001111 xili 100100 XluO 111001 X00i
oiOoo X000 100101 XolO 111010 X~lu
010001 x~oO 100110 x1Io 111011 XO1l
010010 X010 lOOill xil 111100 X100
010011 X01 u~U XO 11 10100 00lto X1ol
Ulolu X100 101301 X~oU 111110 X'llu

1.111 ll ii

TABLE T7 -112 -

ADDRlESS3 C ONw ADDRE~SS C0OJT ADDRESS COt4'

O6iJO X000 Olulol XO1o 101010 XXXX

000010 Xlo O10li. XXXX loliloo xxxxU00011 XOlu Olldoj X1o1 lollut xxxx000100 X101 011031 xuui I0lllu XXXX00010h1 XUOl 011010 X100 101111 xxxx000110 X100 011011 xouo llOUOO XXXX000111 XXXX 011100 X011 110001 XXXX
ooithil X100 016 x1lo 110010 xxxx

ouiJ l Xli 100000 XO1O 110101 xxxx001100 X~lo 100001 XIoI 110110 XXXX001101 X1oI 100010 XQo1 110111 xxxx001110 X~oO 100011 X100 lllOoo xxxx001111 xxxx 100100 X00O 111001 xxxx010000 XOOL 100101 X61I 111010 XXXX010001 X100 100110 x110 111011 xxxx010010 Xjoo 100111 Xxxx 111100 xxxx010011 X0II 101000 XXXx 11l101 XXXX010100 X1o 101001 XXXX 111110 xxxx
111111 xxxx

TABLE T8

ADDRESS CON'T ADDRESS CONTr ADD)RESS CciNT
000000 X066 010101 X111 101010 XXXx000001 X1a1 010110 X100 101011 xxxxouulo X013 010111 x001 101100 xxxx000011 Xili 011000 X01l 101101 xxxxooluD X1O0 011001 xiii. 101110 xxxx000101 X~o1 011010 XO11 101111 xxxx(ooullo x11o 011011 XuOO lluouu xxxx000111 x011 Gilluo xioi 11OU01 xxxxvOlOuJ XtJI 011101 XloI 1 10010 xxxx001001 X0OO 011110 Xili 110011 Xxx001010 x1ol 011111 MlOO 110100 xxxx001011 XO1o 100000 X100 110101 XXXxOOlluO Xili 100001 XU01 110110 xxxx001101 X100 100010 Xli 110111 xxxx001110 XOOI 100011 X011 111000 xxxx001111 X11o 100100 XOOO IlluOl xxxx010000 X11o lO0jol X1o1 111010 xxxx010001 X011 100110 XO1O 111011 xxxx010010 X000 100111 Xili 111100 xxxx010011 x1a1 101000 xxXx 111101 xxxx010100 XO1o 101001 XXXX 111110 xxxx

111111 Xxx

-113-

TABLE T9

ADDRESS co.Nr ADDRESS COOTr ADDi(ESg CO:Pi'

u00oU XOO0 Ololul Xlkll 101010 xli
000601 Xili 010110 Xli)u 101011 XoLc
000010 x1Io 010111 xuiii 101100 XOUI.
000311 xl1 01.1000 X011 101101 Xuoo
000101) X100 011001 XloI 101110 Xiii
0ou101 X0l1 01Jlu10 XuoI 101111 xli
u30111J XOLO 011011 Xu0O 110000 X1Io
001)111 XuoI UllioliXli 110001 X101
001000 X~o1 011101 x11o 110010 Xl00
001001 X000 011110 xioi 110011 X011
001010 Xili 011111 XI00 110100 XOlo
001011 X11l) 100000 XI00 110101 XOU1

oulo xo 1001X011 110111 Xli0;~10011 X10 O0 0 01 1101100 XXX
011 01 100011 X011 11010 XOOO

010001 x~oI010 ~o1101xx
010010 X000 1011 ual1110 ix
010011l Xili 101300 X1 111101 XXXX
010100 X11O 101001 Xliii 111110 xxXx

TABLE TI01111XO

A\DRESS COUT ADD--,,ESS CONT ADDRhESS CONJT

000000 u01)u 010131 XXXX 101013 XXXX
000001 0001 310110 XXXX 101011 XXXX
00CC010 udlI) 01.,111 XXXX 101100 XXXX
ujoll 0011 011000 XXXX 101101 XKXX
000100 0101) 011001 XXXX 10111 XXXX
000101 XXXK 011010 XXXX iull XXXX
000110 xxxx 011011 XXXX 11uo0 XXXX
0oulil xKxx 011100 XXXX 1.10031 XXXX
001000 XXXX 011101 XXXX 110010 XXXX
001001 XXXX 011110 XXXX 110011 XXXX
001010 XXXX 011111 XXXX 110100 XXXX
001011 xxxx 10doijd XXXX 110101 xxxx
001100 XXXX 100001 xxxx 110110 XXXX
U0dlil XXXX 110010 XXXX 110111 XXXX
001110 xxxx 100011 XXXX 111000 XXXX
001111 xxxK 100100 XXXX 111001 XXXX
010001) XXXX 100131 XXXX 111010 XXXX
010001 XXXX 100110 xxxx 11.1011 XXXX
010010 XXXX 100111 XXXX 111100 XXXX
010011 XXXX 1011,00 XXXX 111101 XXXX
010100 XXXX 101001 XXXX 111110 XXXX

111111 (xxKx

-114 -

TABLE HIl

ADDRESS CONT ADDRESS CONT ADDR ESS CONT

000001 0000 010101 1111 101010 UOU0O
000001 0000 010110 i111 101011 000o
o0o01 0000 Olulll 11 I1100 lII
000011 0000 011000 0000 101101 i111
000100 i111 011001 0000 luilio i1
uO0101 1111 Ollul 0000 101111 111
000110 1111 011011 000O llUUUu 0000
000111 i111 011100 11. 110001 0000
001000 0000 011101 i111 10o0 0000
001001 0000 011110 i111 110011 WOO
001010 0000 011111 i111 110100 i111
001011 OO 100000 0000 110101 i111
001100 i111 100001 0000 110110 111
001101 1111 100010 0000 110111 111
001110 111 100011 0000 111000 XXXx
001111 1111 100100 1111 111001 xxxx
0100W0 0000 100101 111 111010 xxxx
010001 0000 100110 1il 111011 xxxx
010010 0000 100111 111 111100 xxxx
010011 0000 101000 0000 111101 XXXx
010100 1111 lOlOul 0000 111110 xxxx

111111 xxxx

TABLE T12

ADDRESS CONT ADDRESS CONT ADDRESS CONT

000000 0000 010101 011i 101010 0101
000001 0010 010110 ii00 101011 1000
000010 0100 010111 1110 101100 100
.000011 (116 011000 OOu 101101 1011
000100 0111 011001 0011 101110 1101
000101 1001 011010 0101 101111 1111
OU0110 1011 llll 0111 110000 0001
000111 1101 011100 1000 i10001 0100
U01000 0000 011101 l10 I0010 0110
0O010u 0010 011110 1100 110011 1000
001010 0100 011111 1110 11010U 1001
001011 0110 100000 0001 110101 1011
001100 0111 10001 0011 llOll 1101
001101 1001 100010 0101 110111 1111
001110 1011 ioo011 0111 111000 XXXx
001111 11(I00130 1O0 IliluOI Xxxx
010000 0000 100101 1010 111010 xxxx
010001 0010 lO011U 1100 111011 xxxX
010010 0101 100111 11 111100 XXXX
010011 0111 101000 0001 111101 xxxX
010100 0111 101001 0011 111110 XXXX

111111 xxxx

TABLE T13 - 115 -

ADDRESS CONT ADDRESS CONT ADDRESS CONT

000000 0000 010131 0001 101010 1111
000001 0011 OliillO olioi 101011 0010
000016 0110 010111 0111 I01100 1101
000011 1001 6116i0 1111 1011 u 000o
000100 0100 Ollual 0010 101110 0011
%I001I01 11i 011010 0101 101111 0110
000110 ioi 011011 1000 110000 1110
O00111 1101 i10 0011 110001 0001
001000 0101 011101 0110 11001 0100
OU1oo1 1000 011110 1001 11oi1 0111
001010 1011 011111 1100 110100) 0010
001011 1110 100000 0100 110101 0101
001100 1001 lO00ul 0111 110110 1000
001101 1100 iO001 1010 110111 1011
001110 1111 O00ii 1101 111000 XXXX
001111 oo1 100100 1000 111001 XXXX
010000 1010 100101 1011 ili010 XXXX
010001 1101 100110 1110 111011 XXXX
010010 0000 1o0111 0001 111100 XXXX
010011 0011 101OU0 1001 111101 XXXX
010100 1110 101001 1100 111110 XXXX

111111 xxxx

TABLE T14

ADDRESS CONT ADDRESS CONT ADDRESS CONT

000000 0000 010101 0011 101010 0110
O0uO0l 0001 010110 0100 101011 0111

000010 0010 01011i Ol0 101100 0101
000011 0011 011000 0011 101101 0110
000100 0001 011001 0100 101110 0111
000101 0010 011010 0101 101111 1000
000110 0011 011011 0110 110000 0011
000111 0100 011100 0100 1i0001 0100
001000 0010 011101 0101 110010 0101
001001 0011 011110 0110 110011 0110
001010 0100 011111 0111 110100 0100
001011 0101 100000 0010 110101 0101
001100 0011 100001 0011 110110 0110
001101 0100 100010 0100 110111 0111
001110 0101 100011 0101 illuo0 0101
001111 0110 100100 0011 111001 0110
010000 0001 100101 0100 111010 0111
010001 0010 100110 0101 111011 1000
010010 0011 100111 0110 111100 0110

oO0ll 0100 101000 0100 111101 0111
010100 0010 101001 0101 111110 1000

111111 100i

TABLE T15 - 116 -

IV. PUBLICATIONS

During the past grant-year the following publications have appeared

on the work supported by this grant

(1) Alan Huang, Yoshito Tsunoda, J. W. Goodman, and Satoshi Ishihara,

"Optical Computation Using Residue Arithmetic", ApIied Optics,

Vol. 18, No. 2, January 1979, pp. 149-162

(2) Alan Huang, Yoshito Tsunoda, J. W. Goodman, and Satoshi Ishihara,

"Some Optical Methods for Performing Residue Arithmetic Opera-

tions", Proceedings of the 1978 International Optical Computing

Conference, Sept. 5-7, 1978, London, England. (IEEE 78CH1305-2C)

(3) Alan Huang, "An Optical Residue Arithmetic Unit", 5th Annual Sympo-

sium on Computer Architecture, Conference Proceedings, Institute of

Electrical and Electronic Engineers (78CH1284-9C), April 1978

- 117 -

AFOSR Contractors and Grantees

Dr David Casasent
Carnegie-Mellon University
Department of Electrical Engineering
Pittsburgh, Pennsylvania 15213

Dr B. Jin Chang
Radar and Optics Division
Environmental Research Institute of Michigan
P. 0. Box 618
Ann Arbor, Michigan 48107

Dr George Eichmann
Department of Electrical Engineering
The City University of New York
Covent Avenue at 138th Street
New York, N.Y. 10031

Dr Elsa Garmire
Center for Laser Studies
University of Southern California
Los Angeles, California 90007

Dr Nicholas George
Director, Institute of Optics
The University of Rochester
Rochester, New York 14627

Dr Joseph W. Goodman
Department of Electrical Engineering
Stanford Electronics Laboratories
Stanford University

Stanford, California 94305

Dr Bobby R. Hun-
Systems & Industrial Engineering Dept

University of Arizona
Tucson, Arizona 85721

Mr Peter Kellman
ESL Incorporated
495 Java Drive

Sunnyvale, California 94086

Dr Sing H. Lee
Dept of Applied Physics and Information Science
University of California, San Diego

La Jolla, California 92093

118 -

Mr Kenneth Leib
Research Department
Grumnan Aerospace Corporation
South Oyster Bay Road
Bethpage, New York 11714

Prof Emmett N. Leith
Electrical and Computer Engineering Dept
The University of Michigan
Ann Arbor, Michigan 48109

Dr William T. Rhodes
School of Electrical Engineering
Georgia Institute of Technology

Atlanta, Georgia 30332

Dr Alexander A. Sawchuk
Electrical Engineering Dept
University of Southern California
Los Angeles, California 90007

Mr Bernard Soffer
Opto-Electronics Department
Hughes Research Laboratories
3011 Malibu Canyon Road
Malibu, California 90265

Dr William Steier
Co-Chairman, Electrical Engineering Dept
University of Southern California
Los Angeles, California 90007

Dr C. S. Tsai
Department of Electrical Engineering
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

Dr John Walkup
Department of Electrical Engineering
Texas Tech University
Lubbock, Texas 79409

Dr Cardinal Warde
Electrical Engineering & Computer Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

- 119-

Supplemental Distribution List

Dr Gerald Brandt
Westinghouse Research & Development Center
1310 Beulah Road
Pittsburgh, Pennsylvania 15235

Dr Keith Bromley
Naval Ocean Systems Center
Code 8111
271 Catalina Blvd
San Diego, California 92152

Dr Robert Brooks
TRW Systems Group
R1/1062 One Space Park
Redondo Beach, California 90278

Dr F. Paul Carlson
Applied Physics and Electronic Science
Oregon Graduate Center
19600 N.W. Walker Road
Beaverton, Oregon 97005

Prof W. Thomas Cathey
Dept of Electrical Engineering
University of Colorado
Denver, Colorado 80302

Dr HI. J. Caulfield
Aerodyne Research, Inc
Applied Science Division
Bedford Research Park
Bedford, Massachusetts 01730

Dr Edwin Champagne
AFAL /DH
Wright-Patterson AFB, Ohio 45433

Prof Stuart A. Collins, Jr
Dept of Electrical Engineering
Ohio StaLe University
2015 Neil Avenue
Columbus, Ohio 43210

Dr Nabil Farhat
University of Pennsylvania
200 South 33rd Street
Philadelphia, Pennsylvania 19174

-120-

Dr David Flannery
Mr Mikollamilton
AFAL/DIIO
Wright-Patterson AFB, Ohio 45433

Dr Albert Friesein
Weizmann Institute of Science

Rehovot, Israel

Dr Bobby Guenther
Commander

U.S. Army Missile Res. and Dev. Command
Attn: DRDMI - TRO/B. D. Guenther

Redstone Arsenal, Alabama 35809

Mr Peter S. Guilfoyle
Departm2nt 232, Mail Station 13-3
McDonnell Douglas Astronautics Company

5301 Bolsa Avenue
Huntington Beach, California 92647

Dr Richard Hudgins
Itek Corporation
10 Maguire Road
Lexington, Massachusetts 02173

Dr T. C. Lee
Corporate Research Center

Honeywell, Inc.
10701 Lyndale Ave., So.
Bloomington, Minnesota 55420

Prof Adolf Lohmann
Physics Institute

University of Erlangen-Nurnberg
Erwin-Rommel-Strasse
D 8520 Erlangen
F.R. Germany

Mr Bob V. Markevitch
Ampex Corporation
401 Broadway
Redwood City, California 94063

Dr Robert Marks

Dept of Electrical Engineering
University of Washington
Seattle, Washington 98195

- 121 -

-. -

((

Captain Bill Miceli
RADC/ESO
L. G. Hanscom AFB, Massachusetts 01730

Dr Robert A. Sprague
Xerox Corporation
Palo Alto Research Labs
3333 Coyote Hill Road
Palo Alto, California 94304

Mr Eric Stevens
Code 7924S
Naval Research Laboratory
Washington, D.C. 20375

Dr William Stoner
Systems Applications, Inc.
3 Preston Court
Bedford, Massachusetts 01730

Dr Henry Taylor
Rockwell International Science Center
Thousand Oaks, California 91360

Prof Brian Thompson, Dean
School of Engineering
University of Rochester
Rochester, New York 14627

Mr Terry Turpin
NSA R551
9800 Savage Road
Fort Meade, Maryland 20755

Dr Anthony Vander Lugt
232 Cocoa Avenue
Indialantic, Florida 32903

Dr Bernard Vatz, Radar Directorate
BMDATC
P. 0. Box 1500
Huntsville, Alabama 35807

Dr Carl M. Verber
Battelle Columbus Laboratories
505 King Avenue
Columbus, Ohio 43201

Mr Harper Whitehouse
Naval Ocean Systems Center
San Diego, California 92152

-122-

Prof James Wyant
Optical Sciences Center
University of Arizona
Tucson, Arizona 85721

Dr Francis T. S. Yu
Electrical and Computer Engineering
Wayne State University
Detroit, Michigan 48202

-123

